Giải bpt
X2 +x-6>0
X2+7+12<=0
(X -2) (x +6) (2x +5)<=0
(1-x) (x2 -- 6)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=1\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(x^2=3\Rightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\sqrt{3}\end{matrix}\right.\)
\(x^2=5\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\end{matrix}\right.\Rightarrow x=-\sqrt{5}\left(vì.x< 0\right)\)
\(x^2=7\Rightarrow\left[{}\begin{matrix}x=-\sqrt{7}\\x=\sqrt{7}\end{matrix}\right.\Rightarrow x=-\sqrt{7}\left(vì.x< 0\right)\)
\(x^2=9\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
\(\left(x-2\right)^2=2\Rightarrow\left[{}\begin{matrix}x-2=-\sqrt{2}\\x-2=\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{2}\\x=2+\sqrt{2}\end{matrix}\right.\)
\(\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x-2=-2\\x-2=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\left(x-6\right)^2=6\Rightarrow\left[{}\begin{matrix}x-6=-\sqrt{6}\\x-6=\sqrt{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6-\sqrt{6}\\x=6+\sqrt{6}\end{matrix}\right.\)
\(\left(x-8\right)^2=8\Rightarrow\left[{}\begin{matrix}x-8=-2\sqrt{2}\\x-8=2\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8-2\sqrt{2}\\x=2+2\sqrt{2}\end{matrix}\right.\)
\(\left(x-10\right)^2=10\Rightarrow\left[{}\begin{matrix}x-10=-\sqrt{10}\\x-10=\sqrt{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-\sqrt{10}\\x=10+\sqrt{10}\end{matrix}\right.\)
\(\left(x-\sqrt{3}\right)^2=3\Rightarrow\left[{}\begin{matrix}x-\sqrt{3}=-\sqrt{3}\\x-\sqrt{3}=\sqrt{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{3}\end{matrix}\right.\)
\(\left(x-\sqrt{5}\right)^2=5\Rightarrow\left[{}\begin{matrix}x-\sqrt{5}=-\sqrt{5}\\x-\sqrt{5}=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{5}\end{matrix}\right.\)
Chọn B.
Ta có:
Vậy tập nghiệm hệ bất phương trình là S = (-1;2).
(a) \(9x^2+12x+4=0\)
\(\Leftrightarrow\left(3x+2\right)^2=0\Leftrightarrow3x+2=0\Leftrightarrow x=-\dfrac{3}{2}\)
(b) \(x^2+\dfrac{1}{4}=x\)
\(\Leftrightarrow x^2-x+\dfrac{1}{4}=0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
(c) \(4-\dfrac{12}{x}+\dfrac{9}{x^2}=0\left(x\ne0\right)\)
\(\Leftrightarrow\left(2-\dfrac{3}{x}\right)^2=0\Leftrightarrow2-\dfrac{3}{x}=0\Leftrightarrow x=\dfrac{3}{2}\)
\(a.\left(x^2-2x+1\right)-4=0\\\Leftrightarrow \left(x-1\right)^2-2^2=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;-1\right\}\)
\(b.x^2-x=-2x+2\\\Leftrightarrow x^2-x+2x-2=0\\\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\\Leftrightarrow \left(x+2\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2;1\right\}\)
\(c.4x^2+4x+1=x^2\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)-x^2=0\\ \Leftrightarrow4\left(x+\frac{1}{2}\right)^2-x^2=0\\ \Leftrightarrow\left[2\left(x+\frac{1}{2}\right)-x\right]\left[2\left(x-\frac{1}{2}\right)+x\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2\left(x+\frac{1}{2}\right)-x=0\\2\left(x+\frac{1}{2}\right)+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x+1-x=0\\2x+1+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-1;-\frac{1}{3}\right\}\)
x 3 + x y 2 − 10 y = 0 x 2 + 6 y 2 = 10 < = > x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0 (1) x 2 + 6 y 2 = 10 (2)
Từ phương trình (1) ta có:
x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0 < = > x 3 + x y 2 − x 2 y − 6 y 3 = 0 < = > x 3 − 2 x 2 y + x 2 y − 2 x y 2 + 3 x y 2 − 6 y 3 = 0 < = > ( x − 2 y ) ( x 2 + x y + 3 y 2 ) = 0 < = > x = 2 y x 2 + x y + 3 y 2 = 0
+ Trường hợp 1: x 2 + x y + 3 y 2 = 0 < = > ( x + y 2 ) 2 + 11 y 2 4 = 0 = > x = y = 0
Với x= y = 0 không thỏa mãn phương trình (2).
+ Trường hợp 2: x= 2y thay vào phương trình (2) ta có:
4 y 2 + 8 y 2 = 12 < = > y 2 = 1 < = > y = 1 = > x = 2 y = − 1 = > x = − 2
Vậy hệ phương trình có 2 nghiệm ( x ; y ) ∈ { ( 2 ; 1 ) ; ( − 2 ; − 1 ) }
1) 9 . (x + 7) - 12 = 24
9 . (x + 7) = 24 + 12
9 . (x + 7) = 36
x + 7 = 36 : 9
x + 7 = 4
x = 4 - 7
x = -3
2) 12 - 3x = -30
3x = 12 - (-30)
3x = 12 + 30
3x = 42
x = 42 : 3
x = 14
3) 95 - 105 : x = 60
105 : x = 95 - 60
105 : x = 35
x = 105 : 35
x = 3
4) x + 35 = 12
x = 12 - 35
x = -23
5) (-24) - (10 - x) = 43
-24 - 10 + x = 43
-34 + x = 43
x = 43 - (-34)
x = 43 + 34
x = 77
6) 6 - (17 + x) = -16
6 - 17 - x = -16
-11 - x = -16
x = -11 - (-16)
x = -11 + 16
x = 5
7) (x - 18) - (-3) = 0
x - 18 + 3 = 0
x - 18 = 0 - 3
x - 18 = -3
x = -3 + 18
x = 15
8) 25 - (x - 6) = -1
25 - x + 6 = -1
25 - x = -1 - 6
25 - x = -7
x = 25 - (-7)
x = 25 + 7
x = 32
1)9.(x+7)-12=24
9.(x+7)=24+12
9.(x+7)=36
x+7=36:9
x+7=4
x=4-7
x=-3
\(\frac{12}{7}\times\frac{2}{11}+\frac{12}{11}\times\frac{15}{7}-\frac{12}{7}\times\frac{6}{11}\)
\(=\frac{12}{7}\times\frac{2}{11}+\frac{12}{7}\times\frac{15}{11}-\frac{12}{7}\times\frac{6}{11}\)
\(=\frac{12}{7}\times\left(\frac{2}{11}+\frac{15}{11}-\frac{6}{11}\right)\)
\(=\frac{12}{7}\times1=\frac{12}{7}\)
\(\frac{12}{7}.\frac{2}{11}+\frac{12}{11}.\frac{15}{7}-\frac{12}{7}.\frac{6}{11}\)
= \(\frac{24}{77}\)+\(\frac{180}{77}\)-\(\frac{72}{77}\)
=\(\frac{132}{77}\)
1)x=-30
2)x=-81
3)x=4
4)x=62
5)x=6
6)-13
7)-13
8)-31
9)x=-6;0;6;12
tk minh nha
\(1.x^2+x-6>0\)
\(\Leftrightarrow x^2-x+6x-6>0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)>0\)
TH1:\(\hept{\begin{cases}x-1>0\\x+6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-6\end{cases}}\Leftrightarrow x>1}\)
TH2:\(\hept{\begin{cases}x-1< 0\\x+6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -6\end{cases}\Leftrightarrow}x< -6}\)
\(2.x^2+7x+12\le0\)
\(\Leftrightarrow x^2+3x+4x+12\le0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\le0\)
TH1:\(\hept{\begin{cases}x+3\ge0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le-4\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}x+3\le0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x\ge-4\end{cases}\Leftrightarrow}-4\le x\le-3\left(n\right)}\)
\(3.\) \(\left(x-2\right)\left(x+6\right)\left(2x+5\right)\le0\)
TH1:\(\hept{\begin{cases}x-2\ge0\\x+6\ge0\\2x+5\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge-6\\x\le-\frac{5}{2}\end{cases}}}\left(l\right)\)
TH2:(loại)
TH3:\(\hept{\begin{cases}x-2\le0\\x+6\ge0\\2x+5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-6\\x\ge-\frac{5}{2}\end{cases}\Leftrightarrow}-\frac{5}{2}\le x\le2}\)
Và còn nhiều TH khác nữa tự tìm nhé
\(4.\) \(\left(1-x\right)\left(x^2-6\right)>0\)
TH1:\(\hept{\begin{cases}1-x>0\\x^2-6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>\sqrt{6}\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}1-x< 0\\x^2-6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< \sqrt{6}\end{cases}\Leftrightarrow}1< x< \sqrt{6}\left(n\right)}\)