K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Xét tam giác ABH và tam giác ACH có:

AB=AC

GÓC A= B

AHB=AHC(=90 ĐỘ)

=> ABH= ACH( CH-GN)

=> HB=HC

HM= 1/2HB

HC+HM=MC

=> HB+ HM= MC

=> HB+ 1/2HB= MC

=> 3/2HB= MC

=> HB= 2/3 MC

=> B là trọng tâm của tam giác ANC

mà AI là trung tuyến

=> A; I; H thẳng hàng

7 tháng 8 2015

a) Xét ΔAMH và ΔNMB có:

       MB=MH (gt)

Góc BMN = HMA (đối đỉnh

       MA=MN (gt)

Vậy ΔAMH=ΔNMB. (c.g.c)

=> Góc MBN=MAH=90o(2 góc tương ứng)

Hay NB vuông góc với BC.

b) Vì ΔAMH=ΔNMB nên AH=NB (1)

ΔABH vuông tại H, có AH là đường cao, AB là đường xiên

nên AH<AB(quan hệ đường xiên và hình chiếu trong tam giác vuông). (2)

Từ (1) và (2) suy ra NB<AB.

c) Từ M kẻ MK vuông góc với AB tại K.

ΔBKM có KM là đường cao, MB là đường xiên nên MK<MB mà MB=MH

=> MK<MH => GÓc BAM<MAH(quan hệ giữa góc và cạnh đối diện trong tam giác).

d) câu này mình k chắc lắm

ΔACN có AI và CM là các đường trung tuyến giao nhau tại H nên H là trọng tâm của tam giác.

=> AH là trung tuyến kẻ từ đỉnh A đến NC, mà AI cũng là trung tuyến kẻ từ A đến NC nên 3 điểm A, H, I cùng nằm trên đường trung tuyến của NC

Vậy 3 điểm A, H, I thẳng Hàng.

vì bạn chưa học đường trung bình nên mình k dùng theo tiên đề ơ-clit được, câu d nếu sai thì cho xl nha!

a)Xét tam giác AMH và tam giác MNB 

Góc M1= Góc M2 ( đối đỉnh)

MA = MN (gt)

MB = MH ( M là trung điểm của BH)

=> tam giác AMH = tam giác MNB ( cgc)

tam giác AMH = tam giác MNB (cmt)

góc B = góc H (góc tương ứng)

Mà góc H = 90 độ ( kẻ Ah vuông góc với BC )

Vậy góc B = góc H = 90 độ

=> NB vuông góc với BC

b)tam giác AMH = tam giác MNB(câu a)

AH=NB( cạnh tương ứng)

Xét tam giác ABH, có:

AB > AH ( quan hệ giữa cạnh huyền và cạnh góc vuông)

Mà AH=NB(chứng minh trên)

=> AB > NB

6 tháng 5 2021

a)Xét tam giác AMH và tam giác NMB,ta có:

MB=MH(gt)

góc NMB=gócAMH(vì 2 góc đối đỉnh)

MN=MA(gt)

Do đó: tam giác AMH=tam giác NMB(c.g.c)

b) +) Ta có:  △ AMH= △NMB(theo câu a)

 ⟹AH=NB( 2 cạnh tương ứng) ⟹đpcm

12 tháng 5 2021

a) Xét hai tam giác AMH và NMB có:

MA = MN (gt)

MB = MH (M là trung điểm BH)

ˆAMH=ˆBMNAMH^=BMN^ (đối đỉnh)

⇒ΔAMH=ΔNMB(c.g.c)⇒ΔAMH=ΔNMB(c.g.c)

Vì ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c) nên góc H = góc B

Mà ˆH=900H^=900 nên ˆB=ˆH=900B^=H^=900 (yttu)

Do đó BC⊥NBBC⊥NB

b) Ta có AH = NB (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))

Vì AH là đường cao của tam giác cân ABC nên AH < AB 

Do đó NB < AB

c) Ta có ˆMAH=ˆMNBMAH^=MNB^ (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))

Vì NB < AB nên góc BAM < góc MNB (quan hệ góc và cạnh đối diện trong tam giác ABN)

Do đó góc BAM < góc MAH

d) Vì tam giác ABC cân tại A có AH vuông BC nên AH đồng thời là đường trung trực BC

Mặt khác, I nằm trên đường trung trực BC nên A, H, I thẳng hàng 

a) Xét ΔAMH và ΔNMB có

MA=MN(gt)

\(\widehat{AMH}=\widehat{NMB}\)(hai góc đối đỉnh)

MH=MB(M là trung điểm của BH)

Do đó: ΔAMH=ΔNMB(c-g-c)

suy nghĩ hơi lâu à nha ~~~ đợi chút

8 tháng 2 2020

https://olm.vn/hoi-dap/detail/8238415826.html Link câu trl

6 tháng 1 2018

Bạn tự vẽ hình nha

a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB

<=> góc ABM = góc ACN (vì các góc kề bù với nhau)

Xét tam giác ABM và tam giác ACN

Có: AB = AC (CMT)

      góc ABM = góc ACN (CMT)

      BM = CN (gt)

<=> tam giác ABM = tam giác ACN (c.g.c)

<=> AM = AN ( 2 góc tương ứng)

<=> tam giác AMN cân tại A

6 tháng 1 2018

b. Vì tam giác ABM = tam giác ACN (CMT)

<=> góc MAB = góc CAN ( 2 góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông AKC

Có: AB= AC (CMT)

      góc AHB= góc AKC= 90 độ

     góc MAB = góc CAN (CMT)

<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)