Cho tam giác ABC vuông tại A(AB<AC), vẽ đường cao AH (H thuộc BC). GỌi D là điểm đối xứng với B qua H.
a) Chứng minh ΔABC đồng dạng ΔHBA.
b)Từ C kẽ đường thẳng vuông góc với tia AD; cắt tia AD tại E. Chứng minh rằng : AH>CD=CE>AD.
c) Chứng minh ΔABC đồng dạng ΔEDC và tính diện tích ΔEDC biết AB=6cm, AC=8cm.
d)Biết AH cắt CE tại F. Tia FD cắt cạnh AC tại K. Chứng minh KD là tia phân giác của góc HKE.
a. Xét ΔABC và ΔHBA
. BAC=BHA(=90)
. ABH chung
⇒ ΔABC~ΔHBA (g.g)