K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
12 tháng 5 2019

thêm đk \(a\in Z\)

\(M=a^3-a+6a\)

\(\Rightarrow M=a\left(a^2-1\right)+6a\)

\(\Rightarrow M=\left(a-1\right)a\left(a+1\right)+6a\)

+ \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)a\left(a+1\right)⋮2\\\left(a-1\right)a\left(a+1\right)⋮3\end{matrix}\right.\)

\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

\(\Rightarrow\left(a-1\right)a\left(a+1\right)+6a⋮6\)

\(\Rightarrow M⋮6\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

12 tháng 11 2019

Cách làm tương tự: Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

13 tháng 11 2016

ta có a^3+5a= a^3-a+6a

                   = a(a^2-1)+6a

                    = a(a-1)(a+1)+6a

vì với a thuộc z thì a, a-1,a+1 là 3 số nguyên liên tiếp nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

=> a(a-1)(a+1) chia hết cho 2 và 3

mà (2;3)=1 nên a(a-1)(a+1) chia hết cho 6

lại có 6a chia hết cho 6 với mọi a thuộc z 

=> a(a-1)(a+1) +6a chia hết cho 6

hay a^3+5a chia hết cho 6

31 tháng 7 2017

cm bằng qui nạp 
thử n=1 ta có n^3+5n = 6 => dúng 
giả sử đúng với n =k 
ta cm đúng với n= k+1 
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6 
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2 
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết 
nế k chẳn thì đương nhiên chia hết 
vậy đúng n= k+ 1 
theo nguyên lý qui nạp ta có điều phải chứng minh

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

 

B) Làm tương tự câu a ta được:

(a+6b); (2a+5b); (3a+4b); (4a+3b); (5a+2b); (6a+b) đều chia hết cho 7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 7.7.7.7.7.7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 76 (ĐPCM)

Vậy...