a. CTR: \(2n+1\)và \(3n+2\) nguyên tố cùng nhau
b. Tìm x: \(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=15x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
a.
\(10⋮\left(x-1\right)\)
\(\Rightarrow x-1=Ư\left(10\right)\)
\(\Rightarrow x-1=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x=\left\{-9;-4;-1;0;2;3;6;11\right\}\)
b.
\(\left(x+5\right)⋮\left(x-2\right)\Rightarrow\left(x-2\right)+7⋮x-2\)
\(\Rightarrow7⋮x-2\)
\(\Rightarrow x-2=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x=\left\{-5;1;3;9\right\}\)
c.
\(\left(3x+8\right)⋮\left(x-1\right)\)
\(\Rightarrow\left(3x-3+11\right)⋮\left(x-1\right)\)
\(\Rightarrow3\left(x-1\right)+11⋮x-1\)
\(\Rightarrow11⋮\left(x-1\right)\)
\(\Rightarrow x-1=Ư\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow x=\left\{-10;0;2;12\right\}\)
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
= \(\frac{3x\left(x-y\right)}{5.2.\left(x+y\right)\left(x-y\right)}-\frac{x\left(x+y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x^2-3xy-x^2-xy}{10\left(x^2-y^2\right)}\)
= \(\frac{3x\left(x-y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x}{10\left(x+y\right)}\)
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41
a: \(=12x^{n+2}+4x^2-8x^{n+2}\)
\(=4x^{n+2}+4x^2\)
b: \(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
a)
Gọi d=(2n+1;3n+2)
Ta có
2n+1\(⋮\)d => 3(2n+1)=6n+3\(⋮\)d
3n+2\(⋮\)d => 2(3n+2)=6n+4\(⋮\)d
=> 6n+4-(6n+3)=1\(⋮\)d
hay d=1
Vậy 2n+1 và 3n+2 là số nguyên tố cùng nhau
a) Gọi \(\left(2n+1;3n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
Vậy 2n+1 và 3n+2 nguyên tố cùng nhau