K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(176:x^2+79=10\cdot9\)

\(\Leftrightarrow176:x^2=11\)

\(\Leftrightarrow x=4\)

3 tháng 9 2018

c. 2 x =16= 2 4 ⇒ x = 4

d. x 2 =9= 3 2  ⇒ x = 3

23 tháng 8 2023

a) Giả sử \(x^2+x⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)

\(\Rightarrow x^2+x+1⋮̸9\)

\(\Rightarrow dpcm\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

Ta thấy \(x\left(x+1\right)\) là số chẵn

\(\left(1\right)\Rightarrow3^y-1\) là số chẵn

\(\Rightarrow y\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài

23 tháng 8 2023

Đính chính

a) Giả sử \(x^2+x\) \(⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x^2+x+1\) \(⋮̸9\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn

\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)

b) 19 chia hết cho x + 2

=> x + 2 \(\in\)Ư(19)

Ư (19) = {1; 19}

=> x + 2 = 1 hoặc x + 2 = 19

* x + 2 = 1 => x = -1

* x + 2 = 19 => x = 17

Vậy x = {-1; 17}

c) 24 chia hết cho x và 36 cũng chia hết cho x

=> x\(\in\)ƯC (24; 36)

ƯC (24; 36) = {1; 2; 3; 4; 6; 12}

Mà x là số tự nhiên lớn nhất => x = 12

d) 150 chia hết cho x, 60 cũng chia hết cho x

=> x \(\in\)ƯC (150; 60)

ƯC (150; 60) = {1; 2; 3; 5; 10; 15; 30}

Mà x>10 => x = {15; 30}

#Học tốt!!!

7 tháng 8 2021

9x + 22 . 5 = 102

9x + 4 . 5 = 100

9x + 20 = 100

9x = 100 - 20

9x = 80

x = 80 : 9

x = 80/9

Chúc bạn học tốt!! ^^

Ta có: \(9x+2^2\cdot5=10^2\)

nên 9x=80

hay \(x=\dfrac{80}{9}\)

7 tháng 8 2021

9x + 22 . 5 = 102

9x + 4 . 5 = 100

9x + 20 = 100

9x = 100 - 20

9x = 80

x = 80 : 9

x = 80/9

Chúc bạn học tốt!! ^^

Ta có: \(9x+2^2\cdot5=10^2\)

\(\Leftrightarrow9x=100-20=80\)

hay \(x=\dfrac{80}{9}\)

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

a: x^9=x^29

=>x^29-x^9=0

=>x^9*(x^20-1)=0

=>x^9=0 hoặc x^20-1=0

=>x=0; x=1;x=-1

b: x^10=x^7

=>x^7(x^3-1)=0

=>x=0 hoặc x=1

Bài 1:

a: Ta có: \(48751-\left(10425+y\right)=3828:12\)

\(\Leftrightarrow y+10425=48751-319=48432\)

hay y=38007

b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)

\(\Leftrightarrow2367-y=1222\)

hay y=1145

Bài 2: 

Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)

\(\Leftrightarrow288:\left(x-3\right)^2=2\)

\(\Leftrightarrow\left(x-3\right)^2=144\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)