Tìm số tự nhiên x biết : 100× x =1×2+2×3+3×4+........99×100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
\(\frac{x}{98}+\frac{x-1}{99}+\frac{x-2}{100}+\frac{1-3}{101}=-4\)
<=> \(\frac{x}{98}+1+\frac{x-1}{99}+1+\frac{x-2}{100}+1+\frac{x-3}{101}+1=0\)
<=> \(\frac{x+98}{98}+\frac{x+98}{99}+\frac{x+98}{100}+\frac{x+98}{101}=0\)
<=> \(\left(x+98\right)\left(\frac{1}{98}+\frac{1}{99}+\frac{1}{100}+\frac{1}{101}\right)=0\)
<=> \(x+98=0\) (do 1/98 + 1/99 + 1/100 + 1/101 khác 0)
<=> \(x=-98\)
Vậy...
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
Câu 1: Dân số thế giới tăng nhanh trong khoảng thời gian nào?
a. Trước Công nguyên b. Từ Công Nguyên- thế kỉ XI
c. Từ thế kỉ XIX- thế kỉ XX d. Từ thế kỉ XIX- nay
Chọn C
Câu 2: Những năm 50 của thế kỉ XX bùng nổ dân số diễn ra ở
a. Châu Âu, Á, Đại dương b. Châu Á,Phi và Mĩ La Tinh
c. Châu Mĩ, Đại dương, Phi. d. Châu Mĩ La Tinh, Á, Âu
Chọn B
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`