Cho 2 góc kề bù CBA và DBC. Biết CBA = 120 độ.
a) tính DBC
b) Trên cugf nửa mặt phẳng bờ AD chứa tia BC vẽ góc DMB = 30 độ. Tia BM có phải là tia p'g của DBC ko . Vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\widehat{CBA}\)và \(\widehat{DBC}\)là hai góc kề bù
=> \(\widehat{CAB}+\widehat{DBC}=180^O\)( Tổng hai góc kề bù )
\(120^o+\widehat{DBC}=180^o\)
=> \(\widehat{DBC}=180^o-120^o=60^o\)
Vậy \(\widehat{DBC}=60^o\)
Vì góc CBA và góc DBC là hai góc kề bù nên có tổng số đo bằng 1800. Theo bài ra ta có:
1.CBA + DBC = 1800
DBC = 1800 - CBA
DBC = 1800 - 1200
DBC = 600
Vậy góc DBC có số đo bằng 600
3. Ta có :
DBM + MBC = DBC
MBC = DBC - DBM
MBC = 600 - 300
MBC = 300
Vì DBM = MBC = 300 nên BM là tia phân giác của góc DBC
1. Trên cùng một nửa mặt phẳng có bờ AD ta có:
CBA+ABD=180
120+ABD=180
ABD=180-120
ABD=60
2. Trên cùng một nửa mặt phẳng có bờ AD TA CÓ
MBC=DBM=60:2=30 nên BM LÀ TIA PG CỦA DBC
1) Vì góc kề bù có tổng số đo bằng 1800 cho nên:
DBC = 180 - 120
DBC = 600
2) BM là phân giác của DBC vì DBC = 60 > DBM = 30
Đúng nha
a \(\widehat{CBA}\)+ \(\widehat{DBC}\)= 180 độ
suy ra \(\widehat{DBC}\)= 180 độ - \(\widehat{CBA}\)=180 độ -120 độ=60 độ
b Ta có \(\widehat{DBM}\)< \(\widehat{DBC}\)(30<60)
suy ra BM nằm giữa BC và BD
\(\widehat{MBC}\)= \(\widehat{DBC}\)- \(\widehat{DBM}\)= 60 - 30 =30
Vì \(\widehat{MBC}\)= \(\widehat{DBM}\)= 30 độ nên BM là tia phân giác của góc DBC
a) Ta có : \(\widehat{ABC}+\widehat{CBD}=\widehat{ABD}\) ( kề bù )
\(120^o+\widehat{CBD}=180^o\)
\(\widehat{CBD}=180^o-120^o\)
\(\widehat{CBD}=60^o\)
b) Góc \(\widehat{CBM}=\widehat{CBD}-\widehat{MBD}\)
\(\widehat{CBM}=60^o-30^o\)
\(\widehat{CBM}=30^o\)
Vì \(\widehat{CBM}=\widehat{MBD}=\frac{\widehat{CBD}}{2}=\frac{60^o}{2}=30^o\) nên tia BM là tia phân giác của \(\widehat{DBC}\)