K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2015

gọi d là UC(3n+1;4n+1)

=> 3n+1 chia hết cho d=> 4(3n+1) chia hết cho d hay 12n+4 chia hết cho d

4n+1 chia hết cho d=>3(4n+1) chia hết cho d hay 12n+3 chia hết cho d

=>(12n+4)-(12n+3) chia hết  cho d hay 1 chia hết cho d

=> d=1

vậy 3n+1 và 4n+1 chia hết cho d

tick nha!!!!!!!

1 tháng 7 2017

Gọi UCLN\(\left(3n+1,4n+1\right)=d\)
=) \(3n+1⋮d \)=) \(4\left(3n+1\right)⋮d\)=) \(12n+4⋮d\)
\(4n+1⋮d\)=) \(3\left(4n+1\right)⋮d\)=) \(12n+3⋮d\)
=) \(\left(12n+4\right)-\left(12n+3\right)⋮d\)
=) \(12n+4-12n-3⋮d\)
=) \(1⋮d\)=) \(d\inƯ\left(1\right)=1\)
=) UCLN\(\left(3n+1,4n+1\right)=1\)
Vậy \(3n+1,4n+1\)là 2 số nguyên tố cùng nhau ( ĐPCM )

13 tháng 11 2015

gọi UCLN(3n+1;4n+1) là d

=> 3n+1 chia hết cho d =>4(3n+1) chia hết cho d =>12n+4 chia hết cho d

=>4n+1 chia hết cho d =>3(4n+1) chia hết cho d =>12n+3 chia hết chi d

=>(12n+4)-(12n+3) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(3n+1;4n+1)=1

=>... nguyên tố cùng nhau

13 tháng 11 2015

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 tháng 11 2016

0 biết

1 tháng 12 2016

A/              Đặt ƯCLN(n+1;4n+3) = d          [ d thuộc N]

           => n+1 chia hết cho d

               4n+3 chia hết cho d

          => 4n+4chia hết cho d [( n+1) x 4]

               4n+3 chia hết cho d

          => (4n+4) - (4n+3) chia hết cho d

          => 1 chia hết cho d

       Mà d thuộc N => d=1   => ƯCLN( n+1; 4n+3) = 1

                                         => n+ 1 và 4n+ 3 nguyên tố cùng nhau

                                                          Vậy .........................................   

B/             Đặt ƯCLN (2n +3; 3n+ 4)= d          [d thuộc N]

               => 2n + 3 chia hết cho d

                   3n+4 chia hết cho d

               => 6n+ 9 chia hết cho d [(2n+3) x 3]

                    6n+ 8 chia hết cho d [(3n+4) x 2]

               => (6n+9) - (6n+8) chia hết cho d

               => 1 chia hết cho d

           Mà d thuộc N =>     d=1    => ƯCLN(2n+3; 3n+4)=1

                                                    => 2n+3 và 3n+4  nguyên tố cùng nhau

                                     Vậy........................................................... Bye nha ! (^_^)

                            

12 tháng 2 2016

Gọi ƯCNL(3n+1 ; 4n+1) = d

Ta có : 3n + 1 chia hết cho d  =>  4(3n + 1) chia hết cho d

            4n + 1 chia hết cho d  =>  3(4n + 1) chia hết cho d

=> 4(3n + 1) - 3(4n + 1) chia hết cho d

=> (12n + 4) - (12n + 3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)

12 tháng 2 2016

Gọi d là ƯCLN(3n+1;4n+1)

       3n+1 chia hết cho d             4(3n+1) chia hết cho d       12n+4 chia hết cho d(1)

=>{                                    =>{                                     =>

       4n+1 chia hết cho d            3(4n+1) chia hết cho d         12n+3 chia hết cho d(2)

Lấy (1)-(2) ta được : (12n+4) - (12n+3) chia hết cho d <=>1chia hết cho d

=> d thuộc Ư(1)=>d thuộc Ư(1) => d thuộc {+-1} vì d là ƯCLN=> d=1=> 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau

 

23 tháng 1 2017

Gọi d là ƯCLN(3n + 1; 4n + 1) Nên ta có :

3n + 1 ⋮ d và 4n + 1 ⋮ d

=> 4(3n + 1) ⋮ d và 3(4n + 1) ⋮ d

=> 12n + 4 ⋮ d và 12n + 3 ⋮ d

=> (12n + 4) - (12n + 3) ⋮ d

=> 1 ⋮ d => d = ± 1

Vì ƯCLN(3n + 1; 4n + 1) = 1 nên 3n + 1 và 4n + 1 là nguyên tố cùng nhau ( đpcm )

23 tháng 1 2017

Gọi \(d=\left(3n+1,4n+1\right)=>\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}}\)

\(=>\left(4n-1\right)-\left(3n-1\right)⋮d\)

\(=>4\left(3n-1\right)-3\left(4n-1\right)⋮d\)

\(=>\left(12n-4\right)-\left(12n-3⋮d\right)\)

\(=>1⋮d\)(đpcm)

20 tháng 4 2018

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

24 tháng 1 2022

Refer:

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

24 tháng 1 2022
14 tháng 11 2017

dễ thế mà không biết làm

14 tháng 11 2017

Gọi d là ƯCLN(3n + 1; 4n + 1), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n+1\right)⋮d\\3\left(4n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+4⋮d\\12n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(12n+4\right)-\left(12n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+1;4n+1\right)=1\)

\(\Rightarrow\)3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau.