K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Để ps trên có giá trị là 1 số nguyên 

\(\Leftrightarrow2x+1⋮x-3\)

\(\Leftrightarrow2x-6+7⋮x-3\)

\(\Leftrightarrow2.\left(x-3\right)+7⋮x-3\)

mà \(2.\left(x-3\right)⋮x-3\)

\(\Rightarrow7⋮x-3\)

\(\Rightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Tự tìm x

10 tháng 5 2019

Để \(\frac{2x+1}{x-3}\)là số nguyên  (Bạn viết nhầm 2x + 1 thành 2n + 1)

=> \(2x+1⋮x-3\)

=> \(2x-6+7⋮x-3\)

=> \(2\left(x-3\right)+7⋮x-3\)

=> \(7⋮x-3\)(Do \(2\left(x-3\right)⋮x-3\))

=> \(x-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

=>\(x\in\left\{4;2;-4;10\right\}\)

Vậy \(x\in\left\{4;2;-4;10\right\}\)

~Study well~

#Seok_Jin#

4n+5/2n-1 nguyên khi 

4n+5 \(⋮\)2n-1

hay 2(2n-1)+9 \(⋮\)2n-1

=>9 \(⋮\)2n-1

=>2n-1 thuộc Ư(9) thuộc 1,-1,3,-3,9,-9

ta có 

2n-1     1        -1       3       -3        9          -9

2n       2         0       4         -2      10          -8

n         1        0          2       -1      5           -4

11 tháng 6 2017

Đặt UCLN(6n+1,2n-1)=d

2n-1 chia het cho d => 6n+1 chia het cho d

[(6n+5) - (6n+3)] chia het cho d

2 chia het cho d nhung 6n+5 va 6n+3 le

=> d=1.

Vậy n=1.

11 tháng 6 2017

Để \(A=\frac{6n+5}{2n-1}\)có giá trị là số nguyên 

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

Do   \(3\left(2n-1\right)⋮2n-1\)

\(\Leftrightarrow8⋮2n-1\)

\(\Leftrightarrow2n-1\inƯ\left(8\right)\)

\(\Leftrightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Ta có bảng sau:

   2n-1   1   -1      2   -2   4   -4   8   -8
   n   1   0   3/2   -1/2   5/2   -3/2  9/2   -7/2

Do n cần tìm là số nguyên

=> n = { 1 ; 0 }

17 tháng 4 2016

n=0;-2

17 tháng 4 2016

dễ :D

6n-3/3n+1=6n+2-5/3n+1=2(3n+1)-5/3n+1=2(3n+1)/3n+1+5/3n+1=2+5/3n+1=>3n+1 thuộc Ư(5) mà Ư(5)={1;-1;5;-5}

=> n=0;-2/3( loại) ;4/3( loại); -2

b: Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)

hay \(x\in\left\{16;4;25;1;49\right\}\)

9 tháng 4 2017

Ta có:

\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}\)

Để \(A\in Z\) thì \(5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị:

\(n-1\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(2\) \(0\) \(6\) \(-4\)

9 tháng 4 2017

A=\(\dfrac{3.n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)

Để A nguyên thì 5\(⋮\)n-1 hay n-1\(\in\)Ư(5)

Ta có bảng sau:

n-1 1 5 -1 -5
n 2 6 0 -4

Vậy n\(\in\){2;6;0;-4}

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)