cho a,b,c>0 CMR a^2/a+bc + b^2/b+ac + c^2/c+ab >=a+b+c/4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
B
0
9 tháng 11 2017
Xét \(\sqrt{a^2-ab+b^2}\) = \(\sqrt{\left(a^2+2ab+b^2\right)-3ab}\) = \(\sqrt{\left(a+b\right)^2-3ab}\)
>= \(\sqrt{\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2}\)( bđt ab <= (a+b)^2/4) = 1/2 (a+b)
Tương tự căn (b^2-bc+c^2) >= 1/2(b+c) ; (c^2-ca+a^2) >= 1/2 (c+a)
=> B >= 1/2 . (a+b+b+c+c+a) = 1/2 . 2 . (a+b+c) = 1 => ĐPCM
Dấu "=" xảy ra <=> a=b=c=1/3
Bài này thiếu đề. Đề đúng là phải có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) nữa nha bạn.
\(\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) \(\Rightarrow ab+bc+ac=abc\)
\(VT=\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\)
\(\Rightarrow VT=\frac{a^2.a}{a\left(a+bc\right)}+\frac{b^2.b}{b\left(b+ac\right)}+\frac{c^2.c}{c\left(c+ab\right)}\)
\(\Leftrightarrow VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
\(\Leftrightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{a\left(a+b\right)+c\left(a+b\right)}+\frac{b^3}{a\left(b+c\right)+b\left(b+c\right)}+\frac{c^3}{c\left(b+c\right)+a\left(b+c\right)}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+c\right)\left(a+b\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(b+c\right)\left(a+c\right)}\)
Áp dụng BĐT Cauchy ta có:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
\(\frac{b^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)
\(\frac{c^3}{\left(b+c\right)\left(a+c\right)}+\frac{b+c}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)
Ta có:
\(\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{a+b+c}{4}=VP\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b=c=3\)
\(\RightarrowĐpcm.\)