so sánh hai phân số \(\frac{10^{18}+4}{10^{19}-1};\frac{10^{18}}{10^{19}-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(A=\frac{10^{18}+1}{10^{19}+1};B=\frac{10^{19}+1}{10^{20}+1}\)
ta có: \(10A=\frac{10^{19}+1+9}{10^{19}+1}=1+\frac{9}{10^{19}+1}\)
\(10B=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
mà \(\frac{9}{10^{19}+1}>\frac{9}{10^{20}+1}\)
=> 10A >10B
=> A > B
+ta có 10^2010=10...0(2010 số 0)
và 10^2011=10...0(2011 số 0)
suy ra -9/10...0(2010 số 0)= -90/10...0(2011 số 0)[nhân tử,mẫu cho 10]
suy ra A=-90/10...0(2011 số 0)+-19/10...0(2011 số 0)= -109/10...0(2011 số 0) [1]
+-19/10...0(2010 số 0)= -190/10...0(2011 số 0)[nhân tử,mẫu cho 10]
và 10^2011=10...0(2011 số 0)
suy ra -9/10...0(2011 số 0)+-190/10...0(2011 số 0)= -199/10...0(2011 số 0) [2]
vì -109>-199 suy ra [1]>[2]
K CHO MIK VS BẠN ƠIIIIIIIIIIIIIIIIIII
\(-A=\frac{9}{10^{2010}}+\frac{19}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{10}{10^{2011}}+\frac{9}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{1}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{10}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{1}{10^{2009}}+\frac{9}{10^{2011}}\)
\(-B=\frac{9}{10^{2011}}+\frac{19}{10^{2010}}\)
Làm tương tự nhé
ta thấy -b > -a nên a>b
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
Do \(B=\frac{10^{20}+1}{10^{21}+1}\)<1
\(\Rightarrow B=\frac{10^{20}+1}{10^{21}+1}\)<\(\frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
\(\Rightarrow\)B<A hay A<B
ta thấy :
\(\frac{10^{18}+4}{10^{19}-1}>\frac{10^8}{10^{19}-1}\)
nhưng
\(\frac{10^8}{10^{19}-5}\)<\(\frac{10^8}{10^{19}-1}\)
=>\(\frac{10^{18}+4}{10^{19}-1}>\frac{10^8}{10^{19}-5}\)
(dạng toán so sánh, dùng một số trung gian)