Cho A=3+3^2+3^3+3^4+...+3^2016. Hỏi A có phải là số chính phương ko?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là số chính phương
chắc zậy tại mk gặp bài này rùi nhưng ko biít đúng ko? chúc năm mới vu vẻ
a, M=3+32+...+32016=3(1+3+...+32015) chia hết cho 3 (1)
CÓ: M=3+32+...+32016=3+32(1+...+32014)=3+9(1+...+32014)
Vì 9(1+...+32014) chia hết cho 9, 3 không chia hết cho 9
=>M=3+9(1+...+32014) không chia hết cho 9 (2)
Từ (1) và (2) => M không phải là số chính phương
b, M=3+32+...+32016
=(3+32+33+34)+....+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40
=40(3+...+32013) chia hết cho 40
=>M có chữ số tận cùng là 0
=>M không phải là số nguyên tố
c, Vì M chia hết cho 3 => 6M chia hết cho 3
Mà 9 chia hết cho 3 => 6M+9 chia hết cho 3 (3)
Ta có: M=3(1+3+...+32015)
=>6M=9.2(1+3+...+32015)
=> 6M chia hết cho 9
Mà 9 chia hết cho 9
=> 6M+9 chia hết cho 9 (4)
Từ (3) và (4) => 6M+9 là số chính phương
d, Ta có: M=3+32+...+32016
=>3M=32+33+...+32017
=>3M-M=(32+33+...+32017)-(3+32+...+32016)
=>2M=32017-3
=>6M+9=3(32017-3)+9=3(32017-3+3)=3.32017=32018=3x+5
=>x+5=2018
=>x=2013
\(A=3+3^2+3^3+...+3^{2016}\)
\(=3\left(1+3+3^2+...+3^{2015}\right)\)
giả sử A là SCP
\(\Rightarrow1+3+3^2+...+3^{2015}\)phải chia hết cho 3
Mà \(1+3+3^2+...+3^{2015}\)chia 3 dư 1
\(\Rightarrow\)giả sử sai
\(\Rightarrow A\)ko là SCP
Ta thấy: A chia hết cho 3 vì các số hạng đều chia hết cho 3. (1)
A ko chia hết cho 3^2 vì 3 ko chia hết cho 3^2 và các số hạng khác đều chia hết. (2)
Từ (1) và (2) suy ra A ko phải là số chính phương.
Vậy A ko phải là số chính phương
\(A=3+3^2+3^3+...+3^{2015}+3^{2016}=3+3^2\left(1+3+3^2+3^3+...+3^{2014}\right).\)
Thấy ngay rằng: A chia hết cho 3 nhưng A không chia hết cho 9. Vậy A không phải là số chính phương.
\(\)