K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

\(P=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{3600-\left(60-n\right)\left(60+n\right)}{60-n}.\) \(P=\frac{3600}{60-n}-\left(60+n\right).\) 

Để P là số nguyên tố thì trước hết P phải là số nguyên. Khi n là số nguyên để P là số nguyên thì  (60 - n) phải là ước của 3600, P>0.

 suy ra n < 60  (Để P dương) như vậy n là ước của 60 \(n\in(1,2,3,4,5,6,10,12,15,30).\) 

Kiểm tra lần lượt, ta thấy n = 10 , n= 12 và n = 15 thỏa mãn. n = 10 , P  = 2   ;  n = 12,  P = 3  và  n = 15 , P = 5.

5 tháng 5 2021

@TRẦN ĐỨC VINH: Gần đúng r bn nhé.

1 tháng 6 2020

35485+111111923873=

9 tháng 5 2019

Ta phải tìm số nguyên dương n để A là số nguyên tố. Với:

\(A=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{-\left(60^2-n^2\right)}{60-n}+\frac{60^2}{60-n}=-\left(60+n\right)+\frac{3600}{60-n}..\) 

Muốn Alà số nguyên tố, trước hêt A phải là số nguyên . Như vậy (60 - n) phải là ước nguyên dương của 3600, suy ra n < 60  và 3600 : (60 - n) phải lớn hơn 60 + n   (Để A dương) đồng thời phải thỏa mãn A là số nguyên tố. Ta kiểm tra lần lượt các giá trị của n là ước của 60 (sao cho 60 - n là ước của 3600)   

 - Trường hợp 1: n = 30   Ta có A = -90 + 3600 : 30 = 30 không là số nguyên tố

  - Trường hợp 2:  n = 15  Ta có  A = -75 + 3600 : 45 = 5 là số nguyên tố . Vậy n = 15 là giá trị thích hợp

 -  Trường hợp 3:   n = 12  Ta có  A = - 72 + 3600 : 48 = 3 là số nguyên tố . Vậy n = 12 là giá tị thích hợp.

 -  Trường hợp 4:   n = 6 ,  n = 5, n = 3,  n =2 thì A không phải là số nguyên, loại. Trường hợp n = 1 thì A âm, loại.

Trả lời: Có hai giá trị của n thỏa mãn yêu cầu bài ra : n = 12 và n = 15 

 

5 tháng 5 2021

@TRẦN ĐỨC VINH: Gần đúng r bn nhé.

17 tháng 8 2015

Em Xét 2 trường hợp: n = 2k và n = 2k + 1

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........