cho a,b>0. Chứng minh 9+ab>=2√9ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)
=căn ab(6+7/b-5/a)
\(\dfrac{9ab}{ab+a+b}\)\(\le\)1+a+b
\(\Rightarrow\)9ab\(\le\)(1+a+b)(a+b+ab)
Xét 9ab = [3\(\sqrt{ab}\)]\(^2\) = [\(\sqrt{ab}\) + \(\sqrt{ab}\) + \(\sqrt{ab}\)]\(^2\) = [1.\(\sqrt{ab}\) + \(\sqrt{a}\).\(\sqrt{b}\)+ \(\sqrt{b}\).\(\sqrt{a}\)]\(^2\) ≤ (1\(^2\) + a + b)( ab + b + a)
Dấu = xảy ra khi a = b = 1
Sửa đề:
\(3a^3+6b^3=a^3+a^3+a^3+b^3+b^3+b^3+b^3+b^3+b^3\)
\(\ge9\sqrt[9]{a^3.a^3.a^3.b^3.b^3.b^3.b^3.b^3.b^3}=9\sqrt[9]{a^9.b^{18}}=9ab^2\)
\(=9\sqrt{ab}-6b\cdot\dfrac{\sqrt{a}}{\sqrt{b}}-\dfrac{1}{b}\cdot3b\sqrt{ab}\)
\(=9\sqrt{ab}-6\sqrt{ab}-3\sqrt{ab}=0\)
\(=9\sqrt{ab}-6\sqrt{ab}+\dfrac{1}{b}\cdot3b\sqrt{ab}\)
\(=3\sqrt{ab}+3\sqrt{ab}=6\sqrt{ab}\)
a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)
b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)
\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)
\(=19ab\sqrt{ab}\)
c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)
\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\sqrt{ab}\)
d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)
\(=-4\sqrt{5a}+9\sqrt{a}\)
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Làm bừa xí, đúng hay ko còn tùy :)
Giả sử phương trình có 3 nghiệm x1, x2, x3 lập thành CSC
\(\Rightarrow x_1+x_3=2x_2\left(1\right)\)
Also have: \(x^3-ax^2+bx-c=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)=x^3-\left(x_1+x_2+x_3\right)x^2+\left(x_1x_2+x_2x_3+x_1x_3\right)x-x_1x_2x_3\)
\(\Rightarrow x_1+x_2+x_3=a\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow3x_2=a\Leftrightarrow x_2=\dfrac{a}{3}\)
\(\Rightarrow\left(\dfrac{a}{3}\right)^2-a\left(\dfrac{a}{3}\right)^2+b.\left(\dfrac{a}{3}\right)-c=0\Leftrightarrow-\dfrac{2a^3}{27}+\dfrac{ba}{3}-c=0\Leftrightarrow9ab=2a^3+27c\left(dpcm\right)\)
C1: dùng pp biến đổi tương đương
\(9+ab\ge2\sqrt{9ab}\)
\(\Leftrightarrow\left(9+ab\right)^2\ge\left(2\sqrt{9ab}\right)^2\)
\(\Leftrightarrow81+18ab+a^2b^2\ge36ab\)
\(\Leftrightarrow81-18ab+a^2b^2\ge0\)
\(\Leftrightarrow\left(9-ab\right)^2\ge0\) là bất đẳng thức đúng
Vậy ta có đpcm. Dấu "=" khi ab = 9
C2: Dùng bất đẳng thức Cô-si
\(9+ab\ge2\sqrt{9ab}\)
Dấu "=" khi ab = 9
Áp dụng BĐT AM-GM cho các số dương:
\(\Rightarrow9+ab\ge2\sqrt{9ab}\)