thu gọn bt sau
3a2b2c3 . (\(\frac{1}{3}\)a2b ) 2
mn giúp Nhi vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{3x^2+9x-3}{x^2+x-2}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
\(=\frac{3x^2+9x-3}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{3x^2+9x-3-\left(x^2-1\right)-\left(x^2-4\right)}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{3x^2+9x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{x^2+9x+2}{\left(x-1\right)\left(x+2\right)}\)
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2020}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2019}}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{2019}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2020}}\right)\)
\(\Leftrightarrow2B=1-\frac{1}{3^{2020}}\)
\(\Rightarrow B=\frac{3^{2020}-1}{3^{2020}\cdot2}\)
= \(\frac{17}{8}:\frac{25}{14}-\left(15-\frac{40}{3}\right):\frac{25}{6}\)
= \(\frac{17}{8}.\frac{14}{25}-\left(\frac{45}{3}-\frac{40}{3}\right).\frac{6}{25}\)
= \(\frac{119}{100}-\frac{5}{3}.\frac{6}{25}\) = \(\frac{119}{100}-\frac{2}{5}\)
= \(\frac{119}{100}-\frac{40}{100}=\frac{79}{100}\)
Chúc bạn Hk tốt!!!!!
\(3a^2b^2c^3\cdot\left(\frac{1}{3}a^2b\right)^2=3a^2b^2c^3\cdot\frac{1}{9}a^4b^2=\frac{1}{3}a^6b^4c^3\)
\(=3a^2b^2c^2.\frac{1}{9}a^4b^2\)
\(=\frac{1}{3}a^6b^4c^2\)