K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

Áp dụng BĐT Cauchy với 2 số không âm
x + y \ge 2\sqrt {xy} (1)
\frac{1}{x} + \frac{1}{y} \ge \frac{2}{{\sqrt {xy} }}(2)
Nhân (1) và(2) ta được(x + y)(\frac{1}{x} + \frac{1}{y}) \ge 4
\Leftrightarrow \frac{1}{x} + \frac{1}{y} \ge \frac{4}{{x + y}} \Rightarrow dpcm

Áp dụng thẳng BĐT AM-GM(Cô si or Cauchy) vào VT,ta có:

1/x +1/y ≥2√1/xy =2/√xy ≥2/(x+y)/2  =4/x+y (đpcm)

Dấu "=" xảy ra khi x = y

22 tháng 2 2020

Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

22 tháng 2 2020

Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.

Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!

25 tháng 12 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)

25 tháng 12 2019

Ta có vì : x,y > 0

và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Từ đề bài ta có:

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)

Áp dụng đẳng thức Cô-si:

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Vậy....

đpcm.

ta có (x-y)^2>=0

=>x^2+y^2>=2xy

=>x^2+2xy+y^2>=4xy

(x+y)^2>=4xy

(x+y)/xy>=4/(x+y)

1/x+1/y>=4/(x+y)

4 tháng 3 2019

câu 1.Ta có:

\(\frac{x^2}{x+3y}+\frac{x+3y}{16}\ge2\sqrt{\frac{x^2}{x+3y}.\frac{x+3y}{16}}=\frac{x}{2}\)

\(\frac{y^2}{y+3x}+\frac{y+3x}{16}\ge2\sqrt{\frac{y^2}{y+3x}.\frac{y+3x}{16}}=\frac{y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{x+y+3x+3y}{16}\ge\frac{x+y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{1}{4}\ge\frac{1}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)

Câu 2:

điều kiện \(a^2+b^2+c^2+d^2=4\)(đúng ko)

Ta có:

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{1}{a^2+1}.\frac{a^2+1}{4}}=1\)

\(\frac{1}{b^2+1}.\frac{b^2+1}{4}\ge2\sqrt{\frac{1}{b^2+1}.\frac{b^2+1}{4}}=1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge2\sqrt{\frac{1}{c^2+1}.\frac{c^2+1}{4}}=1\)

\(\frac{1}{d^2+1}+\frac{d^2+1}{4}\ge2\sqrt{\frac{1}{d^2+1}.\frac{d^2+1}{4}}=1\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-\frac{8}{4}=2\left(đpcm\right)\)

4 tháng 3 2019

Bạn ơi 2 dòng cuối ở câu 2 mình chưa hiểu lắm, làm sao để mất \(a^2+b^2+c^2+d^2\)được vậy?

25 tháng 2 2017

Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:

A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)

Dấu "=" xảy ra khi x = y = z = 1

4 tháng 1 2020

https://olm.vn/hoi-dap/detail/238943826197.html   . tương tự nha bạn đều ở phần giả sử tráo đổi 1 tí

20 tháng 11 2019

Ta có: \(\frac{1}{2}.2x\left(1-x\right)\left(1-x\right)\le\frac{1}{2}\left[\frac{2x+1-x+1-x}{3}\right]^3=\frac{4}{27}\)

\(\Rightarrow\sqrt{x}\left(1-x\right)\le\frac{2\sqrt{3}}{9}\Rightarrow\frac{1}{\sqrt{x}\left(1-x\right)}\ge\frac{9}{2\sqrt{3}}\)

\(\Rightarrow\frac{\sqrt{x}}{1-x}\ge\frac{3\sqrt{3}}{2}x\). Thiết lập tương tự hai BĐT còn lại và cộng theo vế thu được đpcm.