s=1+\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+\(\frac{1}{1+2+3+4}\)+\(\frac{1}{1+2+3+4+5}\)+\(\frac{1}{1+2+3+4+5+6}\)+\(\frac{1}{1+2+3+4+5+6+7}\)+\(\frac{1}{1+2+3+4+5+6+7+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(-\frac{5}{6}\right)-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}+\frac{7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{7}{8}+\frac{6}{7}\)
\(=\frac{7}{8}+\frac{6}{7}=\frac{49}{56}+\frac{48}{56}=\frac{49+48}{56}=\frac{97}{56}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(S=1-\frac{1}{9}=\frac{8}{9}\)
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
Cộng các tổng ở các mẫu số được: \(S=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}.\)
\(\Leftrightarrow S=1+\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{6}+\frac{1}{10}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{21}+\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{36}.\)
Thực hiện các phép nhân một số với một hiệu ,được:
\(S=1+\frac{1}{2}-\frac{1}{6}+\frac{1}{6}+\frac{1}{10}+\frac{1}{6}-\frac{1}{15}+\frac{1}{21}+\frac{1}{12}-\frac{1}{21}+\frac{1}{36}.\)
Giản ước, làm gọn được : \(S=(1+\frac{1}{2})+(\frac{1}{10}+\frac{1}{6}-\frac{1}{15})+(\frac{1}{12}+\frac{1}{36}).\)
\(\Leftrightarrow S=\frac{3}{2}+\frac{1}{5}+\frac{1}{9}=\frac{135+18+10}{90}=\frac{163}{90}.\)