P(x)= a.x2 + b.x + c ( với a khác 0), biết P(1) =0. chứng tỏ rằng P(\(\frac{c}{a}\)) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
Bài 1 : làm tương tự với bài 2;3 nhé
Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)
\(\Rightarrow f\left(1\right)=a+b=1\)
\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)
\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)
Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)
Bài 1 :
\(P\left(0\right)=d=2017\)
\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)
\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)
\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)
Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)
Thay vào (*) ta được \(a+c=4\)(***)
Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****)
(***) => \(8a+8c=32\)(*****)
Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)
Vậy ....
Ta có
\(F\left(0\right)=2016\)
\(\Leftrightarrow a\cdot0^2+b\cdot0+c=2016\)
\(\Leftrightarrow0+0+c=2016\)
\(\Leftrightarrow c=2016\)
\(F\left(1\right)=2016\)
\(\Leftrightarrow a\cdot1^2+b\cdot1+c=2017\)
\(\Leftrightarrow a+b+c=2017\)
\(\Leftrightarrow a+b+2016=2017\)
\(\Leftrightarrow a+b=1\) \(\left(1\right)\)
\(F\left(-1\right)=2018\)
\(\Leftrightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=2018\)
\(\Leftrightarrow a-b+c=2018\)
\(\Leftrightarrow a-b+2016=2018\)
\(\Leftrightarrow a-b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=\left(1+2\right)\div2=3\div2=1.5\)
\(\Rightarrow b=1-1.5=-0.5\)
Vậy \(F\left(x\right)=1.5x^2-0.5x+2016\)
\(\Leftrightarrow F\left(2\right)=1.5\cdot2^2-0.5\cdot2+2016\)
\(=1.5\cdot4-0.5\cdot2+2016\)
\(=6-1+2016=2021\)
Vậy \(F\left(2\right)=2021\)
nhớ k nha
Vào đây để xem câu trả lời :
https://olm.vn/hoi-dap/detail/221006517627.html
\(P\left(1\right)=a+b+c=0\)
\(P\left(\frac{c}{a}\right)=\frac{ac^2}{a^2}+\frac{bc}{a}+c=0\)
\(\Leftrightarrow\frac{c^2}{a}+\frac{bc}{a}+\frac{ac}{a}=0\)
\(\Leftrightarrow\frac{c^2+bc+ac}{a}=0\)
\(\Leftrightarrow\frac{c\left(c+b+a\right)}{a}=0\Leftrightarrow\frac{c}{a}\left(a+b+c\right)=0\Leftrightarrow a+b+c=0\)
\(\Rightarrow P\left(\frac{c}{a}\right)=0\Rightarrowđpcm\)
chúc bn học tốt
\(=\frac{bzx-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bzx}{cz}=\frac{bzx-cxy+cxy-ayz+ayz-bzx}{ax+by+cz}=0\)
=>bz-cy=0;cx-az=0;ay-bx=0
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)
\(P\left(1\right)=a+b+c=0\)
\(P\left(\frac{c}{a}\right)=a\cdot\frac{c^2}{a^2}+\frac{bc}{a}+c=\frac{c^2}{a}+\frac{bc}{a}+\frac{ac}{a}=\frac{c^2+bc+ac}{a}=\frac{c\cdot\left(c+b+a\right)}{a}=0\)
Vậy \(P\left(\frac{c}{a}\right)\)=0