K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Gọi I là trung điểm của BC, hiển nhiên A, I, G thẳng hàng ! AI là trung tuyến của tg ABC!  Vì BD = CE nên CG=BG (=2/3 CE). Tạm giác BGC cân tại G, nên GI  vuông góc với BC hay nói cách khác AI vuông góc BC :  tạm giác ABC phải là tg cân tại A! Đpcm AG là phân giác góc A!                                                                            2/ EG=NG nên N là trung điểm CG( tính chất trung tuyến CG=2 GE)! Tương tự M là trung điểm AG!  Vay thì GD , CM, AN là 3 trung tuyến của tam giác AGC, đồng quy! Mà GD cũng là BD!!!!

14 tháng 6 2020

tự kẻ hình nghen:33333

a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC

=> EG=1/3BE, BG=2/3BE

=> GD=1/3AD, AG=2/3AD

=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE

=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD

b) xét tam giác AGB và tam giác MGN có

GN=BG(cmt)

GM=AG(cmt)

AGB=MGN( đối đỉnh)

tam giác AGB=tam giác MGN (cgc)

MN=AB( hai cạnh tương ứng)

=> BAG=GMN( hai góc tương ứng)

mà BAG so le trong với GMN=> AB//MN

10 tháng 12 2018

1: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

2: Xét ΔBCD có

BA là đường cao

BA là đường trung tuyến

Do đó: ΔBCD cân tại B

3: Xét ΔBCD có

BA là đường trung tuyến

CE là đường trung tuyến

BA cắt CE tại G

Do đó: G là trọng tâm của ΔBCD 

=>AG=1/3BA=1(cm)

25 tháng 4 2020

Câu 1: 

a, Vì AD là trung tuyến \(\Rightarrow AG=\frac{2}{3}AD\)\(\Rightarrow GD=\frac{1}{3}AD\)\(\Rightarrow GM=\frac{2}{3}AD\)(D là trung điểm MG)

\(\Rightarrow AG=GM\)

Vì BE là trung tuyến \(\Rightarrow BG=\frac{2}{3}BE\)\(\Rightarrow GE=\frac{1}{3}BE\)\(\Rightarrow GN=\frac{2}{3}BE\)(E là trung điểm GN)

\(\Rightarrow BG=GN\)

​b, Xét △ANG và △MBG

Có: AG = MG (cmt)

    AGN = MGB (2 góc đối đỉnh)

      NG = BG (cmt)

=> △ANG = △MBG (c.g.c)

=> AN = MB (2 cạnh tương ứng)

và ANG = MBG (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AN // MB (dhnb)

Câu 2: sai đề???