Cho tam giác MNP có I là trung điểm NP. MI là phân giác, G là trọng tâm của tam giác MNP. NK vuông góc với MP tại K. O là giao điểm của NK và MI.
a) Chứng minh tam giác MNP cân tại M
b) NP= 16, MG= 4. Tính MI và MN
c) CO vuông góc với MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ :(
Gọi \(Q\) là giao điểm của \(HK\) và \(MN\)
\(\Rightarrow KQ\) là đường trung tuyến của \(\Delta MNK\Rightarrow QM=QN\)
Xét \(\Delta MNI\) và \(\Delta KNM\) \(\left(\widehat{M}=\widehat{K}=90^o\right)\)
ta có: \(\widehat{N}\) là góc chung
\(\Rightarrow\Delta MNI\sim\Delta KNM\) \(\left(g-g\right)\)
mà \(\Delta KNM\) là tam giác vuông cân tại \(\widehat{K}\) \(\left(gt\right)\)
\(\Rightarrow\Delta MNI\) là tam giác vuông cân tại \(\widehat{M}\)
\(\Rightarrow MN=MI\) \(\Rightarrow MI=5\)
mà \(MK\) là đường cao của \(\Delta MNI\)
\(\Rightarrow MK\) cũng là trung tuyến của \(\Delta MNI\)
\(\Rightarrow KN=KI\)
Xét \(\Delta MNI\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(KN=KI\) \(\left(cmt\right)\)
\(\Rightarrow QK\) là đường trung bình của \(\Delta MNI\)
\(\Rightarrow QK=\dfrac{MI}{2}=\dfrac{5}{2}\)
Xét \(\Delta MNP\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(HN=HP\) (\(H\) là trung điểm của \(NP\))
\(\Rightarrow QH\) là đường trung bình của \(\Delta MNP\)
\(\Rightarrow QH=\dfrac{MP}{2}=\dfrac{13}{2}\)
Ta có \(QH=QK+HK\)
\(\Rightarrow HK=QH-QK=\dfrac{13}{2}-\dfrac{5}{2}=4\)
Vậy \(HK=4\)
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)
\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)
\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)
\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)
b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)
△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)
c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\); \(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)
\(\Rightarrow\)△MDK cân tại M
ta cso: