K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

19 tháng 5 2017

Từ \(a+b+ab=3\Rightarrow a+b=3-ab\ge3-\frac{\left(a+b\right)^2}{4}\)

\(\Rightarrow\left(a+b+6\right)\left(a+b-2\right)\ge0\Rightarrow a+b\ge2\)

Biến đổi bài toán như sau: 

\(P=\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\le\frac{3}{2}\)

Tức là chứng minh \(\frac{3}{2}\) là GTLN của \(P\)

\(P=\frac{3\left(a^2+b^2\right)+3\left(a+b\right)}{ab+a+b+1}+\frac{3-a-b}{a+b}-\left(a+b\right)^2++2\left(3-a-b\right)\)

\(=\frac{3}{4}\left[3\left(a+b\right)^2-6\left(3-a-b\right)+3\left(a+b\right)\right]\)

\(+\frac{3}{a+b}-1-\left(a+b\right)^2+6-2\left(a+b\right)\)

Khảo sat đồ thì trên \(a+b\ge2\) tìm tìm được \(P_{Max}=\frac{3}{2}\)

P/s:giờ mk đi ngủ, mệt r` chỗ nào khó hiểu mai hỏi :D

20 tháng 5 2017

ta có: \(VT=\frac{a\left(a+b+ab\right)}{b+1}+\frac{b\left(a+b+ab\right)}{a+1}+\frac{ab}{a+b}\)

\(=a^2+b^2+\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\)

cần cm \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}\)

theo giả thiết \(4=\left(a+1\right)\left(b+1\right)\le\frac{1}{4}\left(a+b+2\right)^2\)

\(\Leftrightarrow a+b\ge2\)

ta có: \(\frac{ab}{a+b}=\frac{ab+a+b}{a+b}-1=\frac{3}{a+b}\le\frac{3}{2}-1\)(*)

\(\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{1}{4}\left(b+ab\right)+\frac{1}{4}\left(a+ab\right)=\frac{1}{4}\left(3+ab\right)\)(**)

giờ cần tìm max ab.để ý rằng \(ab=ab+a+b-\left(a+b\right)=3-\left(a+b\right)\le3-2=1\)

khi đó \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}-1+\frac{1}{4}\left(3+1\right)=\frac{3}{2}\)(đpcm)

dấu = xảy ra khi a=b=1

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{2}{ab}+\frac{3}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{a^2+b^2}+\frac{1}{a^2+b^2}$

$\geq \frac{(1+1+1+1+1+1+1)^2}{2ab+2ab+2ab+2ab+a^2+b^2+a^2+b^2+a^2+b^2}=\frac{49}{8ab+3(a^2+b^2)}$

$=\frac{49}{3(a+b)^2+2ab}\geq \frac{49}{3(a+b)^2+\frac{(a+b)^2}{2}}=\frac{49}{3+\frac{1}{2}}=14$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

24 tháng 4 2017

Do a,b đều dương nên a^3 + b^3 dương => a - b dương 

Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được : 

    \(a^2+b^2+ab<1\) 

<=> \(\left(a-b\right)\left(a^2+b^2+ab\right) 

24 tháng 4 2017

bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D