Giải PT sau: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{x^{2}+3}{x^{2}-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
a)\(\dfrac{7x-1}{2}+2x=\dfrac{16-x}{3}\)
\(\dfrac{\left(7x-1\right).3}{2.3}+\dfrac{2x.6}{6}=\dfrac{\left(16-x\right)2}{3.2}\)
khử mẫu
=> (7x-1).3+12x=(16-x).2
=>21x-3+12x=-2x+32
=>21x-3+12x+2x-32=0
=>35x-35=0
b)\(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
ĐKXĐ: x khác +-2
\(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
khử mẫu
(x+1).(x+2)+(x-1)(x-2)=2x2+4
=>x2+x+2+x+2+x2-2x-x+2=2x2+4
=>x2+x+2+x+2+x2-2x-x+2-2x2-4=0
=>(x2+x2-2x2)+(x+x-2x-x)+(2+2+2-4)=0
=>-x+2=0
=>-x=-2
=>x=2(loại)
vậy pt vô nghiệm
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
a ) \(\dfrac{1}{x-1}-\dfrac{7}{x+2}=\dfrac{3}{x^2+x-2}\) (1)
ĐKXĐ : x\(\ne1;-2.\)
\(\left(1\right)\Leftrightarrow x+2-7x+7=3\)
\(\Leftrightarrow-6x=-6\)
\(\Leftrightarrow x=1\left(loại\right)\)
Vậy pt vô nghiệm .
b ) \(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)
Đặt \(x^2+2x+1=t\) ta được :
\(\dfrac{t}{t+1}+\dfrac{t+1}{t+2}=\dfrac{7}{6}\)
\(\Leftrightarrow6t^2+12t+6t^2+12t+6=7\left(t^2+3t+2\right)\)
\(\Leftrightarrow5t^2+3t-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{8}{5}\end{matrix}\right.\)
Khi t = 1
\(\Leftrightarrow\left(x+1\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Khi \(t=-\dfrac{8}{5}\)
\(\Leftrightarrow\left(x+1\right)^2=-\dfrac{8}{5}\) ( vô lí )
Vậy ............
Đặt \(2x^2-2x+2=a\)
\(\Leftrightarrow\dfrac{a-3x}{x-1}=\dfrac{a+3x+15}{x-3}\)
\(\Leftrightarrow6x^2+3x+2a-15=0\)
\(\Leftrightarrow10x^2-x-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=-1\end{matrix}\right.\)
\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{4x}{12}-\dfrac{6\left(2x+1\right)}{12}=\dfrac{2x}{12}-\dfrac{3x}{12}\)
\(\Leftrightarrow4x-6\left(2x+1\right)=2x-3x\)
\(\Leftrightarrow4x-12x-6=-x\)
\(\Leftrightarrow4x-12x-6+x=0\)
\(\Leftrightarrow-7x-6=0\)
\(\Leftrightarrow x=-\dfrac{6}{7}\)
ĐKXĐ: ...
\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)
\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x^2+3}{x^2-2x}\)
<=> \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x^2+3}{x\left(x-2\right)}\)
<=> \(\frac{x\left(x+2\right)-x+2}{x\left(x-2\right)}=\frac{x^2+3}{x\left(x-2\right)}\)
=> x2+2x-x+2=x2+3
<=>x=3