K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

Vì \(0\le a,b,c\le2\)nên:

\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)

\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)

Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)

(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))

31 tháng 3 2017

Đk: a,b>0\(2=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\ge\left(a+b\right)\left[\left(a+b\right)^2-\dfrac{3}{4}\left(a+b\right)^2\right]\)

=\(\dfrac{\left(a+b\right)^3}{4}\)(BĐT cauchy)

\(\Rightarrow\left(a+b\right)^3\le8\Leftrightarrow a+b\le2\)

dấu = xảy ra khi a=b=1

mà a,b >0 nên a+b >0

Kl:\(0< a+b\le2\)

14 tháng 4 2017

cam on ban nha

6 tháng 2 2020

Từ \(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Và \(ab+1\ge c\)

Do vậy \(2\left(ab+1\right)\ge a+b+c\Leftrightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Cm tương tự ta có : \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ca+1}\le\frac{2b}{a+b+c}\end{cases}}\)

Cộng vế với vế của 3 bđt trên :

\(\frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

24 tháng 4 2020

a)Ta có a>0,b>0,a<b

Nhân cả 2 vế của a<b với a

=> a^2<ab ( vì a>0)

Nhân cả 2 vế của a<b với b

=> ab<b^2 ( vì b>0)

b)có a,b>0 , a<b

Bình phương a<b

=> a^2<b^2

a,b>0, a<b

=> a^3<b^3