Một số nguyên tố b : 42 dư r
Tìm r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải. Phân tích \(42=3.2.7\)
Ta có \(P=42k+r\)
Xét
- Nếu \(P=2\Rightarrow r=40\) thoả mãn.
- Nếu \(P=3\Rightarrow r=49\)thoả mãn.
- Nếu \(P>3\), do P nguyên tố nên r không thể là các ước nguyên dương của 42, r hợp số mà \(r<42\)
- Nên \(r=25\)
Ta có:
p = 42.k + r. = 2.3.7.k + r
Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y
x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố.
Vậy x và y có thể là các số trong các số {5,11,13, ..}
Nếu x=5 và y=11 thì r = x.y =55 > 42
Vậy chỉ còn trường hợp x = 5, y = 5. Khi đó r = 25
Vì P : 42 dư r
Nên r C {0;1;2;...;40;41}
Mà r là hợp số
=>rC {4;6;8;9;10;12;14;15;16;18;20;21;22;24;25;26;27;28;30;32;33;34;35;36,38;39;40}
Vì r là hợp số nên r và 42 là nguyên tố cùng nhau
Vì 42 = 2 x 3 x 7 nên R không chia hết cho 2, 3 và 7 hoặc bội của chúng
Trong các số từ 1 đến 41 chỉ có 5 và 25 thỏa mãn
Vì r là hợp số nên chọn r = 25 thỏa mãn đầu bài
Ta có :
p = 42k + r = 2 . 3 . 7 k + r ( k , r \(\in\)N , 0 < r < 42 ) . Vì p là số nguyên tố nên r không chia hết cho 2 , 3 , 7 .
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9 , 15 , 21 , 25 , 27 , 33 , 35 , 39 .
Loại đi các số chia hết cho 3 , 7 , chỉ còn 25 .
Vậy r = 25
Ta có:
p = 42.k + r. = 2.3.7.k + r
Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y
x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố.
Vậy x và y có thể là các số trong các số {5,11,13, ..}
Nếu x=5 và y=11 thì r = x.y =55>42
Vậy chỉ còn trường hợp x = 5, y = 5. Khi đó r = 25.
Ta có
(●>ω<● ) •✫ ✾♕ TiỂu NgƯ nHI (☆▽☆)(ღ˘⌣˘ღ) (⊂(♡⌂♡)⊃
bạn copy nên mới không thể đổi phông chữ được chứ gì
Trl :
Ta có :
\(P=42.k+r.=2.3.7.k+r\)
Vì \(r\)là hợp số và \(r< 42\)nên \(r\)phải là tích của 2 số \(r\)\(=x.y\)
\(x,y\)không thể là \(2,3,7\)và cũng không thể là số \(⋮2,3,7\)được vì thế thì \(P\)không là số nguyên tố
Vậy \(x,y\)có thể là \(\left\{5,11,13,...\right\}\)
Nếu \(x=5\)và \(y=11\)thì\(r=x.y\)= \(55>43\)
Vậy chỉ còn trường hợp : \(x=5\), \(y=5\). Khi đó , \(r=25\)