Cho a3 - b3 =2ab và a,b thuộc Q. CMR: \(\sqrt{1+ab}\) thuộc Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
Áp dụng bdt bunhiacopxki
\(\left(\sqrt{a-1}+\sqrt{b-1}\right)^2<=\left(a-1+1\right)\left(b-1+1\right)=ab\)=>\(\sqrt{a-1}+\sqrt{b-1}<=\sqrt{ab}\)
cmtt \(\sqrt{ab}+\sqrt{c-1}<=\sqrt{c\left(ab+1\right)}\)
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
a: Ta có: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a+b+c=0\)
\(\left(a^3+b^3\right)\left(a+b\right)=ab\left(1-a\right)\left(1-b\right)\)
\(\Leftrightarrow\left(1-a\right)\left(1-b\right)=\left(\dfrac{a^2}{b}+\dfrac{b^2}{a}\right)\left(a+b\right)\ge\left(a+b\right)^2\ge4ab\)
\(\Rightarrow1+ab-4ab\ge a+b\ge2\sqrt{ab}\)
\(\Rightarrow3ab+2\sqrt{ab}-1\le0\)
\(\Leftrightarrow\left(\sqrt{ab}+1\right)\left(3\sqrt{ab}-1\right)\le0\)
\(\Leftrightarrow ab\le\dfrac{1}{9}\)
Vì \(a\in\left[-2;5\right]\Rightarrow\left(a+2\right)\left(a-5\right)\le0\Leftrightarrow a^2-3a-10\le0\Leftrightarrow a^2\le3a+10\)(1)
CMTT \(b^2\le3b+10\Rightarrow2b^2\le6b+20\left(2\right)\) ; \(c^2\le3c+10\Leftrightarrow3c^2\le9c+30\)(3)
Từ (1) (2) và (3) => \(a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\)
BĐT đc cm
Bài này xoay quanh hằng đẳng thức sau: \(x^2+xa+xb+ab=\left(x+a\right)\left(x+b\right)\).
Thực vậy, theo giả thiết \(-d=a+b+c\) nên ta có \(ab-cd=ab+c\left(a+b+c\right)=\left(c+a\right)\left(c+b\right).\)
Tương tự, \(bc-ad=bc+a\left(a+b+c\right)=\left(a+b\right)\left(a+c\right),\)
\(ca-bd=ca+b\left(a+b+c\right)=\left(b+a\right)\left(b+c\right).\)
Do đó \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(c+a\right)\left(c+b\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ.