cho tam giác AMN vuông tại A có AM<AN.
Cho biết AM = 12 cm, MN= 37 cm. Tính độ dài AN và so sanh các góc trong tam giác AMN
trên tia đối của BA lấy điểm C sao cho BC=BA, CI cắt MN tại D Chứng Minh MN =3.DN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
a) Áp dụng định lý Pytago vào `\triangleAMN` vuông tại `A`, ta có:
`AN^2 =MN^2 -AM^2 <=>AN^2 =37^2 -12^2 <=>AN^2 =1369-144=1225<=>AN=35cm`
Ta có: `AM<AN<MN=>\hat{N}<\hat{M}<\hat{A}`
b) Xét `\triangleABI` và `\triangleNBI`, ta có:
`BI` chung
`AI=NI`
`\hat{AIB}=\hat{BIN}=90^o`
`=>\triangleABI=\triangleNBI`
c) Ta có:
`BI` vuông góc `AN`
`AM` vuông góc `AN`
\(\Rightarrow BI//AM\)
Mà `I` là trung điểm `AN`
`=>B` là trung điểm `MN`
`=>NB=1/2 MN`
Xét `\triangleACN`, ta có:
`NB` và `CI` là đường trung tuyến mà đều đi qua `D`
`=>D` là trọng tâm
`=>ND=2/3 NB`
Mà `NB=MB`
`=>ND=1/3 MN`
`=>MN=3ND`
a: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góckề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
\(\widehat{BME}=\widehat{CNF}\)(ΔABM=ΔACN)
Do đó: ΔBME=ΔCNF
c: Ta có: ΔBME=ΔCNF
=>ME=NF
Ta có: AE+EM=AM
AF+FN=AN
mà AM=AN và ME=NF
nên AE=AF
Xét ΔAEO vuông tại E và ΔAFO vuông tại F có
AO chung
AE=AF
Do đó: ΔAEO=ΔAFO
=>\(\widehat{EAO}=\widehat{FAO}\)
=>\(\widehat{MAO}=\widehat{NAO}\)
=>AO là phân giác của góc MAN
d: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
AM=AN
Do đó: ΔAMH=ΔANH
=>\(\widehat{MAH}=\widehat{NAH}\)
=>AH là phân giác của góc MAN
mà AO là phân giác của góc MAN
nên A,O,H thẳng hàng
a: Xét ΔAOM vuông tại O và ΔAON vuông tại O có
AM=AN
AO chung
Do đó: ΔAOM=ΔAON
MB =24-18=6cm
vì MN // BC => NC=MB=6cm
=> AN =36-6=30cm
=> S.AMN = 1/2x18x30=......cm2
MB =24-18=6cm
vì MN // BC => NC=MB=6cm
=> AN =36-6=30cm
=> S.AMN = 1/2x18x30=270 cm2
nếu đúng cho mình xin 1 tick nhé
( Hình bạn tự vẽ giúp mình nha )
a) Xét △ ABM và △ ACN có
AB = AC
BM = CN
\(\widehat{ABM}=\widehat{ACN}\)
⇒ △ ABM = △ ACN ( c - g - c )
⇒ AM = AN ( hai cạnh tương ứng )
Suy ra: △ AMN cân tại A
b) Xét tam giác vuông BME và tam giác vuông CNF ta có:
MB = CN
\(\widehat{EMB}=\widehat{CNF}\) ( vì △ AMN cân tại A )
⇒ △ BME = △ CNF ( ch - gn )
c) Vì △ BME = △ CNF ( cmt )
⇒ ME = CF
⇒ EA = FA
Xét tam giác vuông EAO và tam giác vuông AOF ta có:
AE = FA
AO cạnh chung
⇒ △ EOA = △ FOA ( ch - cgv )
⇒ \(\widehat{EAO}=\widehat{FAO}\)
Hay AO là tia phân giác góc \(\widehat{MAN}\)
d) Ta có: EO ⊥ AM
MH ⊥ AM
⇒ EO // MH
Lại có: \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )
Từ đó suy ra: A, O, H thẳng hàng
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
c: Ta có: ΔABH=ΔACK
nên AH=AK
d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔHBM=ΔKCN
Suy ra: \(\widehat{HBM}=\widehat{KCN}\)
mà \(\widehat{HBM}=\widehat{OBC}\)
và \(\widehat{KCN}=\widehat{OCB}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
bn tham khảo tại đây nhé :
Kết quả tìm kiếm | Học trực tuyến
....