K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

4 tháng 9 2019

a) ĐKXĐ: \(x;y>0\)  

 Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)

\(\Rightarrow4x+4y-xy=0\)

\(\Rightarrow x\left(4-y\right)=-4y\)

\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)

\(\Rightarrow x=4-\frac{16}{4-y}\)

Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)

\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Tìm nốt y và thay vào tìm ra x

5 tháng 9 2019

a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

Không mất tính tổng quát giả sử: \(x\ge y\)

\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Leftrightarrow0< y\le8\)

\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt

19 tháng 11 2017

Áp dụng bất đẳng thứ Cauchy (AM-GM):

\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)

Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)

Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\)  (1)

Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\)  (2) 

Và:  \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\)  (3) 

Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)

19 tháng 11 2017

Cô si 3 số đó lại đi

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

2 tháng 9 2018

(x^3 +x):(x.y-1) nhận giá trị nguyên dương <=> ( x^3 + x ) chia hết (xy-1) 

=> y( x^3 + x ) = x^2 ( xy - 1) + (xy - 1 )+ x^2 +1 chia hết cho (xy - 1) 

=> x^2 + 1 chia hết cho ( xy - 1) 

=> y( x^2 + 1 ) = x( xy - 1) + (x + y) chia hết cho ( xy - 1) 

=> x + y chia hết cho ( xy - 1) => x + y >= xy - 1 

=> x + y - xy - 1 >= -2 

=> (x - 1 ) - y( x- 1) >= -2 

=> (x - 1)( 1 - y) > = -2 

=> ( x - 1)( y - 1) =< 2 

do x, y nguyên dương => ( x - 1) =< 2 

Th1 x-1 = 2 => x = 3 => 3^3 + 3 = 30 chia hết cho (3.y - 1) 

mà 3y - 1> = 2 => 3y - 1 = 2, 3, 5, 6, 15, 30 

do 3y - 1 chia 3 dư 2=> 3y - 1 = 2; 5=> y = 1 hoặc 2 

TH2 : x - 1 = 1 => x = 2 => 2^3 + 2 = 10 chia hết cho 2y - 1 

=> 2y - 1 = 1; 5 => y thuộc { 1, 3} 

TH 3 : x - 1 = 0 => x = 1 => 1^3 + 1 = 2 chia hết cho 1.y - 1 

=> y - 1 = 1 hoặc 2 => y = 2; hoặc y = 3 

=> ( x , y) thuộc { (3, 1); (3, 2);(2, 1); (2, 3); ( 1, 2); ( 1, 3) }

27 tháng 5 2016

nhân 2 vế với 3xy =>3y+3x=xy+3=>\(\left\{y-3\right\}\left\{x-3\right\}=12\)

=>y-3;x-3 thuộc ước 12={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}

27 tháng 5 2016

Nhân cả hai vế với 3xy (Nhận được vì x , y nguyên dương) ta có: 

\(3y+3x=xy+3\Leftrightarrow3y-xy+3x-3=0\)

\(\Leftrightarrow y\left(3-x\right)+3x-9+6=0\Leftrightarrow y\left(3-x\right)-3\left(3-x\right)=-6\)

\(\Leftrightarrow\left(y-3\right)\left(x-3\right)=6\)

Từ đó ta tìm được x ,y.

Chúc em học tốt :)