nhân cả tử và mẫu của các phân thức với chính nó ta có:\(\frac{a}{\left(ab+a+1\right)^2}=\frac{\frac{a^2}{\left(ab+a+1\right)^2}}{a}\)rồi công 3 vế lại và áp dụng bđt bu nhi a mở rộng đc.......\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)
mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)
=>\(M\le\frac{3}{2}\)
dấu = xảy ra <=> a=b=c
d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)
thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)
Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)
\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)
\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)
b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu dc chứng minh.
a)Áp dụng Bđt Cô si ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cộng theo vế 2 bđt trên ta có:
\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu = khi a=b=c
b)Áp dụng Bđt Cô-si ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)
Cộng theo vế 3 bđt trên ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Đấu = khí a=b=c
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\)
đây ko phải toán lớp 1 toán lớp 1 làm gì mà khó thế