K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

\(a.2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

=> 2 / 1/2x - 1/3 / = 1/4 + 3/2 = 7/4

=> / 1/2x - 1/3 / = 7/4 : 2 = 7/8

=> \(\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{cases}}\)

=> \(\hept{\begin{cases}\frac{1}{2}x=\frac{7}{8}+\frac{1}{3}=\frac{29}{24}\\\frac{1}{2}x=-\frac{7}{8}+\frac{1}{3}=-\frac{13}{24}\end{cases}}\)

Đến đây ez rồi

3 tháng 5 2019

So sánh x với 1/3 Vx đk  : 60%x + 2/3x = 1/3.6

Ta có :

60%x + 2/3x = 1/3.6

=> 3/5x + 2/3x = 2

=> 19/15x = 2

=> x = 2 : 19/15

=> x = 30/19 = 1 + 11/19 > 1/3

<=> 60%x + 2/3x = 1/3 . 6 > 1/3

20 tháng 6 2015

Nhiều thế vậy ...!!

Sao làm nổi?

29 tháng 12 2021

c: \(\Leftrightarrow6x+3=\dfrac{11}{4}\left(2-x\right)\)

\(\Leftrightarrow x=\dfrac{10}{11}\)

a: =>5x>1

=>x>1/5

b: =>3x-3<2

=>3x<5

=>x<5/3

c: =>2x-3x^2-x<15-3x^2-6x

=>x<15-6x

=>7x<15

=>x<15/7

1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)

\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)

\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)

=>-8x+8=0

hay x=1(nhận)

c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)

b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)

c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)

4 tháng 1 2022

a,

\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)

b,

\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)

 

a: =>x-3=2 hoặc x-3=-2

=>x=5 hoặc x=1

b: =>x2=0

hay x=0

c: =>(3x-5-x+1)(3x-5+x-1)=0

=>(2x-4)(4x-6)=0

=>x=2 hoặc x=3/2

d: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1-x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-4\right)=0\)

hay \(x\in\left\{1;-1;4\right\}\)

14 tháng 2 2022

\(a,\left(x-3\right)^2=4\\\Leftrightarrow\left(x-3\right)^2-2^2=0\\ \Leftrightarrow \left(x-3-2\right).\left(x-3+2\right)=0\\ \Leftrightarrow\left(x-5\right).\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\\\Rightarrow S=\left\{1;5\right\}\\ b,x^2.\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\\ \Rightarrow S=\left\{0\right\}\\ c,\left(3x-5\right)^2-\left(x-1\right)^2=0\\ \Leftrightarrow\left(3x-5-x+1\right).\left(3x-5+x-1\right)=0\\ \Leftrightarrow\left(2x-4\right).\left(4x-6\right)=0\\ \Leftrightarrow2.\left(x-2\right).2.\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow S=\left\{\dfrac{3}{2};2\right\}\)

\(d,\left(x^2-1\right).\left(2x-1\right)=\left(x^2-1\right).\left(x+3\right)\\ \Leftrightarrow\left(x^2-1\right).\left(2x-1-x-3\right)=0\\ \Leftrightarrow\left(x^2-1\right).\left(x-4\right)=0\\ \Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=4\end{matrix}\right.\\ \Rightarrow S=\left\{-1;1;4\right\}\)

23 tháng 4 2019

\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)

\(\Leftrightarrow-5x-\frac{1}{5}-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)

\(\Leftrightarrow\left(-5x-\frac{1}{2}x\right)+\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{3}{2}x-\frac{5}{6}\)

\(\Leftrightarrow\left(\frac{-10}{2}x-\frac{1}{2}x\right)+\left(\frac{5}{15}-\frac{3}{15}\right)=\frac{3}{2}x-\frac{5}{6}\)

\(\Leftrightarrow\frac{-11}{2}x+\frac{2}{15}=\frac{3}{2}x-\frac{5}{6}\)

\(\Leftrightarrow\frac{-11}{2}x-\frac{3}{2}x=-\frac{5}{6}-\frac{2}{15}\)

\(\Leftrightarrow\frac{-14}{2}x=-\frac{25}{30}-\frac{4}{30}\)

\(\Leftrightarrow-7x=-\frac{29}{30}\)

\(\Leftrightarrow x=-\frac{29}{30}\times\frac{-1}{7}\)

\(\Leftrightarrow x=\frac{29}{210}\)

23 tháng 4 2019

\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)

\(\Leftrightarrow3x-\frac{3}{2}-5x-3=\frac{1}{5}-x\)

\(\Leftrightarrow\left(3x-5x\right)-\left(\frac{3}{2}+3\right)=\frac{1}{5}-x\)

\(\Leftrightarrow-2x-\left(\frac{3}{2}+\frac{6}{2}\right)=\frac{1}{5}-x\)

\(\Leftrightarrow-2x-\frac{9}{2}=\frac{1}{5}-x\)

\(\Leftrightarrow-2x+x=\frac{1}{5}+\frac{9}{2}\)

\(\Leftrightarrow-x=\frac{2}{10}+\frac{45}{10}\)

\(\Leftrightarrow-x=\frac{47}{10}\)

\(\Leftrightarrow x=\frac{-47}{10}\)

a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x-5\right)=-4\)

\(\Leftrightarrow x^2+5x+6-x^2+7x-10=-4\)

\(\Leftrightarrow12x=0\)

hay x=0

b: Ta có: \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)

\(\Leftrightarrow x^3+1-x^3+9x=8\)

\(\Leftrightarrow9x=7\)

hay \(x=\dfrac{7}{9}\)

c: Ta có: \(4x^2-9=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x+1-2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)