K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

3\(\left(x-4\right)\)+​\(\left(x-4\right)\)2=0

<=> ​\(\left(x-4\right)\)\(\left(x-4+3\right)\)=0

=>\(\left(x-4\right)\)=0 hoặc ​\(\left(x-4+3\right)\)=0

TH1 x-4=0

<=> x=4

TH2 x-4+3=0

<=> x=1

vậy nghiệm của pt là x=1 và x=4

27 tháng 7 2016

\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2=0\)

\(\Rightarrow x^2+2\left(x^2+2x+1\right)+3\left(x^2+4+4x\right)+4\left(x^2+6x+9\right)=0\)

\(\Rightarrow x^2+2x^2+4x+2+3x^2+12+12x+4x^2+24x+36=0\)

\(\Rightarrow10x^2+40x+50=0\)

\(\Rightarrow10\left(x^2+4x+5\right)=0\)

\(\Rightarrow x^2+4x+5=0\)

\(\Rightarrow\left(x^2+4x+2\right)+3=0\)

\(\Rightarrow\left(x+2\right)^2=-3\)

Mà \(\left(x+2\right)^2\ge0\)với mọi \(x\)

Vậy...

27 tháng 7 2016

nk bạn chỗ cuối phải là \(\left(x+2\right)^2=-1\) chứ

14 tháng 12 2023

a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)

\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)

\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)

\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)

\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)

\(6x\left(-3x+4\right)=0\)

\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)

*) \(6x=0\)

\(x=0\)

*) \(-3x+4=0\)

\(3x=4\)

\(x=\dfrac{4}{3}\)

Vậy \(x=0;x=\dfrac{4}{3}\)

b) \(4x\left(x-2019\right)-x+2019=0\)

\(4x\left(x-2019\right)-\left(x-2019\right)=0\)

\(\left(x-2019\right)\left(4x-1\right)=0\)

\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)

*) \(x-2019=0\)

\(x=2019\)

*) \(4x-1=0\)

\(4x=1\)

\(x=\dfrac{1}{4}\)

Vậy \(x=\dfrac{1}{4};x=2019\)

20 tháng 12 2016

x^2 - 3x - 4=0

x^2 - 3x =0+4

x^2 -3x=4

x.x-3x=4

x.(x-3)=4

Suy ra x>3 và x ko thể bằng 3 

Vậy x xhir có thể là 4

20 tháng 12 2016

=x^2+x-4x-4

=(x^2+x)-(4x+4)

=x(x+1)-4(x+1)

=(x+1)(x-4)

=>

x=-1

x=4

21 tháng 1 2016

thằng PHÙNG GIA BẢO nó mới học lớp 6 thôi chị ạ

21 tháng 1 2016

kh lm dc thì đừng cmt nhaq 

2 tháng 6 2021

số mũ cao nhất đưa ra ngoài, các số mũ nhỏ hơn hoặc số ko có chứa cái số mũ cao nhất ấy thì em đặt nó trên số mũ cao nhất (ko biết giải thích vậy có ai hiểu ko)

\(lim_{x\rightarrow\infty}\dfrac{4-\dfrac{1}{x}-\dfrac{1}{x^2}}{\dfrac{3}{x^2}+2}=\dfrac{4}{2}=2\)

NV
2 tháng 6 2021

Đầu tiên em cần phải hiểu \(x\rightarrow+\infty\) nghĩa là gì đã

Toàn bộ phép giới hạn này được diễn giải ra sẽ là: giá trị của biểu thức \(\dfrac{4x^2-x-1}{3+2x^2}\) sẽ rất gần (tiến tới) một giá trị bằng bao nhiêu khi thay x bằng một số vô cùng lớn.

Tiếp theo, 1 quy tắc đơn giản: \(\dfrac{hằng-số}{biến}\) sẽ bằng bao nhiêu khi biến số là 1 số vô cùng lớn

Chúng ta sẽ ví dụ: \(\dfrac{10}{x}\)

Với  \(x=1\Rightarrow\dfrac{10}{x}=10\) rất lớn so với 0

\(x=10\Rightarrow\dfrac{10}{x}=1\) lớn hơn 0, nhưng không nhiều

\(x=100\Rightarrow\dfrac{10}{x}=0,1\) lớn hơn 0, nhưng không đáng kể

\(x=1000000\Rightarrow\dfrac{10}{x}=0,00001\) lớn hơn 0, nhưng cực kì gần 0

Vậy bây giờ cho x bằng 1 số siêu lớn, ví dụ 1000 tỉ? Giá trị \(\dfrac{10}{x}\) sẽ vô cùng gần 0, có thể coi nó như 0

Cho nên, khi \(x\rightarrow\infty\) thì \(\dfrac{a}{x}\) với a là hằng số sẽ có thể coi như bằng 0 (nếu mẫu số là mũ bậc cao, ví dụ \(x^2;x^5\) thì nó tiến sát 0 càng nhanh hơn nữa)

Do đó, \(\lim\limits_{x\rightarrow\infty}\dfrac{4-\dfrac{1}{x}-\dfrac{1}{x^2}}{\dfrac{3}{x^2}+2}=\dfrac{4-0-0}{0+2}=2\)

Đây là cách hiểu chính xác của giới hạn khi biến tiến tới vô cực

9 tháng 9 2021

\(\left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\)

\(=\left[x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\right]:\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-x-2\right):\left(x^2-1\right)=x^2-x-2\)

\(\left(x^2+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-5\\x=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\in\varnothing\\x=5\end{cases}}}\)

Vậy x=5

TK MK ĐÊ RỒI MK LÀM TIẾP!

\(x-\frac{1}{9}=\frac{8}{3}\)

\(\Leftrightarrow x=\frac{8}{3}+\frac{1}{9}\)

\(\Leftrightarrow x=\frac{24+1}{9}=\frac{25}{9}\)