Tìm hiểu về một nhà khoa học nổi tiếng trong năm nhà bác học sau đây rồi viết tóm tắt về quốc tịch, ngày sinh, phát minh quan trọng và điều em thích nhất về nhà bác học đó: Newton, Darwin, Pasteur, Marie Curie, Einstein
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Niu-tơn (Newton) | Đác-uyn (Darwin) | Pa-xtơ (Pasteur) | Ma-ri Quy-ri (Marie Curie) | Anh-xtanh (Einstein) | |
Quốc tịch | Anh | Anh
| Pháp
| Pháp | Đức |
Ngày sinh | 25/12/1642 | 12/2/1809 | 27/12/1822 | 7/11/1867 | 14/3/1879 |
Phát minh quan trọng | - Luận thuyết của ông về Philosophiae Naturalis Principia Mathematica ( Các Nguyên lý Toán học của Triết học Tự nhiên), đã mô tả về vạn vật hấp dẫn và ba định luật về chuyển động, - Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng - Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu. - Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát. | - Darwin phát hiện ra nguyên lý chọn lọc tự nhiên. Từ vấn đề này Darwin nhận định, sinh vật không ngừng tiến hóa từ bậc thấp đến bậc cao và ông đã chỉ ra, động - thực vật khi nuôi trồng sở dĩ có biến dị là do con người lựa chọn, lai tạo giống tùy theo mục đích sử dụng. Từ kết quả này, Darwin đã cho xuất bản cuốn sách “Nguồn gốc các loài” vào năm 1859 | - Ông đã đề ra các biện pháp thanh trùng để làm giảm tỷ lệ tử vong sau khi sinh đẻ ở các sản phụ, tạo ra loại vắc-xin đầu tiên cho bệnh dại và bệnh than. - Ông cũng nổi tiếng trong việc phát minh ra kỹ thuật bảo quản sữa và rượu để ngăn chặn vi khuẩn có hại xâm nhập, một quá trình mà ngày nay được gọi là thanh trùng. - Ông được xem là một trong 3 người thiết lập nên lĩnh vực Vi sinh vật học | - Bà đã phát triển lý thuyết phóng xạ (phóng xạ là thuật ngữ do bà đặt ra), kỹ thuật để cô lập đồng vị phóng xạ và phát hiện ra hai nguyên tố, polonium và radium. - Dưới sự chỉ đạo của bà, các nghiên cứu đầu tiên trên thế giới đã được tiến hành để điều trị các khối u bằng cách sử dụng các đồng vị phóng xạ. - Bà đã phát triển các xe X–quang di động để cung cấp dịch vụ X-quang cho các bệnh viện dã chiến. | - Phát hiện ra thuyết tương đối hẹp - Hiện tượng nguyệt thực - Ánh sáng bị bẻ cong do lực hấp dẫn - Phát hiện ra hiệu ứng quang điện, bước ngoặc khai sinh ra lý thuyết lượng tử ánh sáng |
Điểu em thích nhất ở nhà khoa học | Ông cống hiến hết mình cho khoa học: Ông đối với khoa học thì chuyên cần nhưng trong sinh hoạt lại là người vô tâm, hay quên, ông thường làm việc quên cả ăn. | Câu nói của ông: Một người thuộc về khoa học phải không có mơ ước, không có tình thương – chỉ là trái tim bằng đá. | Câu nói của ông: Không có thứ gọi là khoa học ứng dụng, chỉ có những ứng dụng của khoa học | Bà là người phụ nữ đầu tiên nhận giải Nobel, người đầu tiên và là phụ nữ duy nhất vinh dự giành được hai Giải Nobel trong hai lĩnh vực khác nhau – vật lý và hóa học. | 3 tuổi ông mới biết nói và cho đến năm 8 tuổi - khi bắt đầu học đọc ông vẫn nói không thạo. Tuy nhiên ông lại bắt đầu mày mò với khoa học từ rất sớm, từ khoảng 10 tuổi ông đã bắt đầu mày mò làm các mô hình và thiết bị cơ học. (Ông có tình yêu khoa học từ khi còn bé) |
quốc tịch: nước Đức
ngày sinh:14/3/1879
Tham khảo:phát minh quan trọng: năng lượng mặt trời,sự thấm hút của khăn giấy,dự báo thị trường chứng khoán,định vị vệ tinh GPS,con trỏ laser các thiết bị điện tử hiện đại,tủ lạnh Einstein,bom hạt nhân,chất ngưng tụ Bose-Einstein (BEC),lời giải đáp về màu xanh của bầu trời.
em thích nhà bác học đó vì sự thông minh, giỏi giang của ông ấy.
Sir Isaac Newton PRS (25 tháng 12 năm 1642 – 20 tháng 3 năm 1726 (lịch cũ)[a]) là một nhà toán học, nhà vật lý, nhà thiên văn học, nhà thần học, và tác giả (ở thời của ông được gọi là "nhà triết học tự nhiên") người Anh, người được công nhận rộng rãi là một trong những nhà toán học vĩ đại nhất và nhà khoa học ảnh hưởng nhất mọi thời đại và là một hình ảnh điển hình trong cách mạng khoa học. Luận thuyết của ông Philosophiæ Naturalis Principia Mathemaa (tạm dịch: Các Nguyên lý Toán học của Triết học Tự nhiên), xuất bản lần đầu năm 1687, đã đặt ra nền tảng cho cơ học cổ điển. Newton cũng có các đóng góp quan trọng cho quang học, và cùng với Gottfried Wilhelm Leibniz là những người phát triển lên phép tính vi tích phân vô cùng bé.
Newton quay trở lại nghiên cứu về cơ học thiên thể bằng cách xem xét lực hấp dẫn và ảnh hưởng của nó lên quỹ đạo của các hành tinh có tham chiếu đến định luật Kepler về chuyển động của hành tinh. Điều này một phần từ sự gợi mở trong các trao đổi thư từ ngắn vào năm 1679–80 của ông với Hooke, người đã được bổ nhiệm quản lý thông tấn của hội Hoàng gia, và người đã viết thư nhằm thu hút sự đóng góp của Newton cho các tạp chí của hội Hoàng gia.[50] Sự quan tâm trở lại của Newton đối với các vấn đề thiên văn càng nhận được sự phấn khích hơn nữa khi xuất hiện một sao chổi vào mùa đông năm 1680–1681, nơi ông đã trao đổi thư từ với John Flamsteed.[58] Sau khi trao đổi với Hooke, Newton đã tìm cách chứng minh hình dạng elip của quỹ đạo hành tinh sẽ là kết quả của lực hướng tâm tỷ lệ nghịch với bình phương của vectơ bán kính. Newton đã thông báo kết quả của mình đến Edmond Halley và hội Hoàng gia trong De motu corporum in gyrum, một bản thảo được viết trên khoảng chín trang đã được sao chép vào Sổ Đăng ký của hội Hoàng gia vào tháng 12 năm 1684.[59] Bản thảo này chứa các ý tưởng trung tâm mà Newton đã phát triển và mở rộng để tạo thành Principia.
Marie Curie:
I.Tóm tắt về sơ yếu lý lịch của Marie Curie, bao gồm: Sinh, sinh thời và mất
- Một nhà vật lý và hóa học người Pháp gốc Ba Lan.
- Sinh: 7 - 11 - 1867
- Sinh thời:
+ Bà đã phát triển lý thuyết phóng xạ (phóng xạ là thuật ngữ do bà đặt ra), kỹ thuật để cô lập đồng vị phóng xạ và phát hiện ra hai nguyên tố: polonium và radium.
+ Bà đã nghiên cứu và mua thiết bị X-quang, các xe X-quang di động và máy phát điện phụ trợ. Những máy này được cung cấp lực từ xạ khí radium, một loại khí phóng xạ không màu, được phát ra bởi radium, sau này được nhận ra là radon để khử trùng mô bị nhiễm bệnh.
- Mất: 4 - 7 - 1934
+ Sinh ra dành cho nghiên cứu và mất đi cũng vì nghiên cứu. Ngày 4 tháng 7 năm 1934, bà qua đời ở viện điều dưỡng Sancellemoz tại Passy ở Haute-Savoie vì thiếu máu không tái tạo được do nhiễm xạ.
~ Hok T ~
Thomas Edison là nhà khoa học, nhà sáng chế và một thương nhân đã phát minh ra rất nhiều thiết bị có ảnh hưởng tới cuộc sống của chúng ta. Trong cuộc đời minh, nhà phát minh vĩ đại này đã có 1093 bằng sáng chế mang tên ông tại Hoa Kì cũng như các bằng sáng chế tại Pháp, Anh, Đức.
HT nhé
1.Giận dữ chỉ náu mình trong lồng ngực của những kẻ ngu xuẩn.
Anger dwells only in the bosom of fools.
2.Nguồn tri thức duy nhất là kinh nghiệm.
The only source of knowledge is experience.
3.Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic.
Pure mathemas is, in its way, the poetry of logical ideas.
4.Thật kỳ diệu rằng sự tò mò vẫn sống sót sau giáo dục truyền thống.
It is a miracle that curiosity survives formal education.
5.Người trí thức giải quyết rắc rối; bậc anh tài ngăn chặn rắc rối.
Intellectuals solve problems, geniuses prevent them.
6.Với tôi thì tôi ưa thói xấu câm lặng hơn là đức hạnh phô trương.
As far as I'm concerned, I prefer silent vice to ostentatious virtue.
7.Mỗi người nên đi tìm điều vốn thế chứ không phải điều mình nghĩ là nên thế.
A man should look for what is, and not for what he thinks should be.
8.Tình yêu là người thầy tốt hơn trách nhiệm.
Love is a better teacher than duty.
9.Thế giới sẽ bị hủy diệt không phải bởi những người làm điều ác, mà bởi những người đứng nhìn mà không làm gì cả.
The world will not be destroyed by those who do evil, but by those who watch them without doing anything.
10.Khi chúng ta chấp nhận giới hạn của mình, chúng ta đã vượt qua nó.
Once we accept our limits, we go beyond them.
11.Nghệ thuật tối thượng của người thầy là đánh thức niềm vui trong sự diễn đạt và tri thức sáng tạo.
It is the supreme art of the teacher to awaken joy in creative expression and knowledge.
12.Ít người thực sự nhìn với đôi mắt của mình và cảm nhận bằng trái tim mình.
Few are those who see with their own eyes and feel with their own hearts.
13.Quy luật của toán học càng liên hệ tới thực tế càng không chắc chắn, và càng chắc chắn thì càng ít liên hệ tới thực tế.
As far as the laws of mathemas refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.
14.Chỉ cuộc đời sống cho người khác là cuộc đời đáng giá.
Only a life lived for others is a life worthwhile.
15.Giáo dục là thứ gì còn lại sau khi anh đã quên những gì anh học ở trường.
Education is what remains after one has forgotten what one has learned in school.
16.Những tâm hồn vĩ đại luôn va phải sự chống đối mãnh liệt từ những trí óc tầm thường.
Great spirits have always encountered violent opposition from mediocre minds.
17.Chủ nghĩa anh hùng theo mệnh lệnh, bạo lực phi lý và tất cả những điều vô nghĩa nhân danh lòng ái quốc - tôi mới căm ghét chúng làm sao!
Heroism on command, senseless violence, and all the loathsome nonsense that goes by the name of patriotism - how passionately I hate them!
18.Điên rồ: lặp đi lặp lại một việc và hy vọng những kết quả khác nhau.
Insanity: doing the same thing over and over again and expecting different results.
19.Ai cũng nên được tôn trọng như một cá nhân, nhưng không phải là thần tượng hóa.
Everyone should be respected as an individual, but no one idolized.
20.Hãy cùng gia đình vui tươi trong miền đất cuộc sống đẹp đẽ này!
Rejoice with your family in the beautiful land of life!
Mik rất thích ông này
Vì ông này là người do thái nên bị phân biệt chủng tộc sau đó ông đã rồi nước Đức và trở thành Dipora ( dipora là những người khong có quốc tịch
Tham khảo :
M.V. Lô – mô – nô − xốp sinh năm 1711 trong một gia đình sống bằng nghề chài lưới. Mãi tới năm 19 tuổi nhân một chuyến theo đoàn tàu buôn đến Mát – xcơ – va, Lô – mô – nô − xốp mới xin được vào học một trường giòng gọi là Viện Hàn lâm Xla − vơ Hy Lạp. Năm 1735 ông tốt nghiệp và được Viện gửi đến Pê – téc – bua tiếp tục học tập. Ngay năm sau 1736 ông lại được cử sang Đức nghiên cứu nghề luyện kim và khai mỏ. Năm 1741 ông trở về nước Nga với tư cách là một nhà tự nhiên học, nghiên cứu những vấn đề quan trọng nhất của vật lý và hoá học. Một số thành tựu tiêu biểu của Lô – mô – nô – xốp như xây dựng thành công thuyết hạt về cấu tạo các chất, phương pháp điều chế chất màu vô cơ và thuỷ tinh màu từ các nguyên liệu trong nước. Ngoài ra, ông còn sáng tạo ra “ngôn ngữ hoá học” Nga qua nghiên cứu phân tích các thành phần của các muối và các chất khoáng….
La – voa – đi – ê là nhà bác học Pháp, ông sinh ra ở Paris vào năm 1743 trong một gia đình trung lưu. Từ năm 1754 đến 1761, La – voa – đi – ê đã nghiên cứu về nhân văn và khoa học tại Đại học Ma – za – rin. Kết quả là sau này, ông được nhận vào Hội luật sư. Tuy nhiên, ông lại nghiêng về nghiên cứu khoa học, với những thành tựu đạt được ông đã được nhận vào Học viện Khoa học Paris vào năm 1768, ở tuổi 25 năm. Trong suốt quá trình nghiên cứu của mình La – voa – đi – ê đã có những phát kiến để đời như phát hiện vai trò của oxygen trong quá trình cháy và hô hấp, đồng thời xác định rằng nước là một hợp chất của hydrogen và oxygen. Ngoài ra ông còn là người đặt nền móng giúp chuyển đổi hóa học từ một ngành khoa học định tính thành một ngành khoa học định lượng…
Đặc biệt, hai nhà bác học Lô – mô – nô – xốp và La – voa – đi – ê đã tiến hành độc lập với nhau những thí nghiệm được cân đo chính xác, từ đó phát hiện ra định luật bảo toàn khối lượng.
saac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.
Luận thuyết của ông về Philosophiae Naturalis Principia Mathemaa (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học.
Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu.
Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát.
Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein.[3]
Mục lục
[ẩn]
- 1Sự nghiệp
- 2Tiểu sử
- 3Nghiên cứu khoa học
- 3.1Quang học
- 4Quả táo Newton
- 5Tác phẩm
- 5.1Xuất bản khi sinh thời
- 5.2Xuất bản sau khi qua đời
- 5.3Nguồn sơ cấp
- 6Xem thêm
- 7Chú thích
- 8Thư mục tham khảo
- 9Đọc thêm
- 10Liên kết ngoài
- 10.1Do Newton viết
Sự nghiệp
Newton năm 1702, vẽ bởi Godfrey Kneller
Isaac Newton sinh ra trong một gia đình nông dân. Khi ông ở quãng tuổi từ khoảng 12 đến 17, ông học tại King's School, Grantham, nơi mà ông chỉ học tiếng Latinh và không có Toán. Sau đó, ông rời khỏi trường và đến tháng 10 năm 1659, ông có mặt tại Woolsthorpe-by-Colsterworth, nơi mà mẹ ông, lần thứ hai góa bụa, đang cố gắng khiến ông trở thành một nông dân. Nhưng Newton lại ghét việc đồng áng. Henry Stocks, thầy của ông tại King's School, đã thuyết phục mẹ ông cho ông quay trở lại trường học để ông có thể tiếp tục việc học của mình.
Vào tháng 6 năm 1661, Newton được gửi tới Đại học Cambridge để trở thành luật sư. Tại Cambridge, Newton bị ấn tượng mạnh từ trường phái Euclid, tuy rằng tư duy của ông cũng bị ảnh hưởng bởi trường phái của Roger Bacon và René Descartes. Một đợt dịch bệnh đã khiến trường Cambridge đóng cửa và trong thời gian ở nhà, Newton đã có những phát kiến khoa học quan trọng, dù chúng không được công bố ngay.
Những người có ảnh hưởng đến việc công bố các công trình của Newton là Robert Hooke và Edmond Halley. Sau một cuộc tranh luận về chủ đề quỹ đạo của một hạt khi bay từ vũ trụ vào Trái Đất với Hooke, Newton đã bị cuốn hút vào việc sử dụng định luật vạn vật hấp dẫn và cơ học của ông trong tính toán quỹ đạo Johannes Kepler. Những kết quả này hấp dẫn Halley và ông đã thuyết phục được Newton xuất bản chúng. Từ tháng 8 năm 1684 đến mùa xuân năm 1688, Newton hoàn thành tác phẩm, mà sau này trở thành một trong những công trình nền tảng quan trọng nhất cho vật lý của mọi thời đại, cuốn Philosophiae Naturalis Principia Mathemaa.
Trong quyển I của tác phẩm này, Newton giới thiệu các định nghĩa và ba định luật của chuyển động thường được biết với tên gọi sau này là Định luật Newton. Quyển II trình bày các phương pháp luận khoa học mới của Newton thay thế cho triết lý Descartes. Quyển cuối cùng là các ứng dụng của lý thuyết động lực học của ông, trong đó có sự giải thích về thủy triều và lý thuyết về sự chuyển động của Mặt Trăng. Để kiểm chứng lý thuyết về vạn vật hấp dẫn của ông, Newton đã hỏi nhà thiên văn John Flamsteedkiểm tra xem Sao Thổ có chuyển động chậm lại mỗi lần đi gần Sao Mộc không. Flamsteed đã rất sửng sốt nhận ra hiệu ứng này có thật và đo đạc phù hợp với các tính toán của Newton. Các phương trình của Newton được củng cố thêm bằng kết quả quan sát về hình dạng bẹt của Trái Đất tại hai cực, thay vì lồi ra tại hai cực như đã tiên đoán bởi trường phái Descartes. Phương trình của Newton cũng miêu tả được gần đúng chuyển động Mặt Trăng, và tiên đoán chính xác thời điểm quay lại của sao chổi Halley. Trong các tính toán về hình dạng của một vật ít gây lực cản nhất khi nằm trong dòng chảy của chất lỏng hay chất khí, Newton cũng đã viết ra và giải được bài toán giải tích biến phân đầu tiên của thế giới.
Newton sáng tạo ra một phương pháp khoa học rất tổng quát. Ông trình bày phương pháp luận của ông thành bốn quy tắc của lý luận khoa học. Các quy tắc này được phát biểu trong quyển Philosophiae Naturalis Principia Mathemaa như sau:
- Các hiện tượng tự nhiên phải được giải thích bằng một hệ tối giản các quy luật đúng, vừa đủ và chặt chẽ.
- Các hiện tượng tự nhiên giống nhau phải có cùng nguyên nhân như nhau.
- Các tính chất của vật chất là như nhau trong toàn vũ trụ.
- Một nhận định rút ra từ quan sát tự nhiên chỉ được coi là đúng cho đến khi có một thực nghiệm khác mâu thuẫn với nó.
Bốn quy tắc súc tích và tổng quát cho nghiên cứu khoa học này đã là một cuộc cách mạng về tư duy thực sự vào thời điểm bấy giờ. Thực hiện các quy tắc này, Newton đã hình thành được các định luật tổng quát của tự nhiên và giải thích được gần như tất cả các bài toán khoa học vào thời của ông. Newton còn đi xa hơn việc chỉ đưa ra các quy tắc cho lý luận, ông đã miêu tả cách áp dụng chúng trong việc giải quyết một bài toán cụ thể. Phương pháp giải tích mà ông sáng tạo vượt trội các phương pháp mang tính triết lý hơn là tính chính xác khoa học của Aristoteles và Thomas Aquinas. Newton đã hoàn thiện phương pháp thực nghiệm của Galileo Galilei, tạo ra phương pháp tổng hợp vẫn còn được sử dụng cho đến ngày nay trong khoa học. Những câu chữ sau đây trong quyển Opks(Quang học) của ông có thể dễ dàng bị nhầm lẫn với trình bày hiện đại của phương pháp nghiên cứu thời nay, nếu Newton dùng từ "khoa học" thay cho "triết lý về tự nhiên":
Cũng như trong toán học, trong triết lý về tự nhiên, việc nghiên cứu các vấn đề hóc búa cần thực hiện bằng phương pháp phân tích và tổng hợp. Nó bao gồm làm thí nghiệm, quan sát, đưa ra những kết luận tổng quát, từ đó suy diễn. Phương pháp này sẽ giúp ta đi từ các hợp chất phức tạp đến nguyên tố, đi từ chuyển động đến các lực tạo ra nó; và tổng quát là từ các hiện tượng đến nguyên nhân, từ nguyên nhân riêng lẻ đến nguyên nhân tổng quát, cho đến khi lý luận dừng lại ở mức tổng quát nhất. Tổng hợp lại các nguyên nhân chúng ta đã khám phá ra thành các nguyên lý, chúng ta có thể sử dụng chúng để giải thích các hiện tượng hệ quả.
Newton đã xây dựng lý thuyết cơ học và quang học cổ điển và sáng tạo ra giải tích nhiều năm trước Gottfried Leibniz. Tuy nhiên ông đã không công bố công trình về giải tích trước Leibniz. Điều này đã gây nên một cuộc tranh cãi giữa Anh và lục địa châu Âu suốt nhiều thập kỷ về việc ai đã sáng tạo ra giải tích trước. Newton đã phát hiện ra định lý nhị thức đúng cho các tích của phân số, nhưng ông đã để cho John Wallis công bố. Newton đã tìm ra một công thức cho vận tốc âm thanh, nhưng không phù hợp với kết quả thí nghiệm của ông. Lý do cho sự sai lệch này nằm ở sự giãn nở đoạn nhiệt, một khái niệm chưa được biết đến thời bấy giờ. Kết quả của Newton thấp hơn γ½ lần thực tế, với γ là tỷ lệ các nhiệt dung của không khí.
Theo quyển Opks, mà Newton đã chần chừ trong việc xuất bản mãi cho đến khi Hooke mất, Newton đã quan sát thấy ánh sáng trắng bị chia thành phổ nhiều màu sắc, khi đi qua lăng kính (thuỷ tinh của lăng kính có chiết suất thay đổi tùy màu). Quan điểm hạt về ánh sáng của Newton đã xuất phát từ các thí nghiệm mà ông đã làm với lăng kính ở Cambridge. Ông thấy các ảnh sau lăng kính có hình bầu dục chứ không tròn như lý thuyết ánh sáng thời bấy giờ tiên đoán. Ông cũng đã lần đầu tiên quan sát thấy các vòng giao thoa mà ngày nay gọi là vòng Newton, một bằng chứng của tính chất sóng của ánh sáng mà Newton đã không công nhận. Newton đã cho rằng ánh sáng đi nhanh hơn trong thuỷ tinh, một kết luận trái với lý thuyết sóng ánh sáng của Christiaan Huygens.
Newton cũng xây dựng một hệ thống hoá học trong mục 31 cuối quyển Opks. Đây cũng là lý thuyết hạt, các "nguyên tố" được coi như các sự sắp xếp khác nhau của những nguyên tử nhỏ và cứng như các quả bi-a. Ông giải thích phản ứng hoá học dựa vào ái lực giữa các thành phần tham gia phản ứng. Cuối đời (sau 1678) ông thực hiện rất nhiều các thí nghiệm hoá học vô cơ mà không ra kết quả gì.
Newton rất nhạy cảm với các phản bác đối với các lý thuyết của ông, thậm chí đến mức không xuất bản các công trình cho đến tận sau khi người hay phản bác ông nhất là Hooke mất. Quyển Philosophiae Naturalis Principia Mathemaa phải chờ sự thuyết phục của Halley mới ra đời. Ông tỏ ra ngày càng lập dị vào cuối đời khi thực hiện các phản ứng hoá học và cùng lúc xác định ngày tháng cho các sự kiện trong Kinh Thánh. Sau khi Newton qua đời, người ta tìm thấy một lượng lớn thuỷ ngân trong cơ thể của ông, có thể bị nhiễm trong lúc làm thí nghiệm. Điều này hoàn toàn có thể giải thích sự lập dị của Newton.
Newton đã một mình đóng góp cho khoa học nhiều hơn bất cứ một nhân vật nào trong lịch sử của loài người. Ông đã vượt trên tất cả những bộ óc khoa học lớn của thế giới cổ đại, tạo nên một miêu tả cho vũ trụ không tự mâu thuẫn, đẹp và phù hợp với trực giác hơn mọi lý thuyết có trước. Newton đưa ra cụ thể các nguyên lý của phương pháp khoa học có thể ứng dụng tổng quát vào mọi lĩnh vực của khoa học. Đây là điều tương phản lớn so với các phương pháp riêng biệt cho mỗi lĩnh vực của Aristoteles và Aquinas trước đó.
Ngoài việc nghiên cứu khoa học, Newton dùng phần lớn thời gian để nghiên cứu Kinh Thánh, ông tin nhận một Chúa Trời duy nhất là Đấng tạo hóa siêu việt mà người ta không thể phủ nhận sự hiện hữu của ngài khi nhìn ngắm vẻ hùng vĩ của mọi tạo vật.[4][5] Mặc dù được trưởng dưỡng trong một gia đình Anh giáo nhưng vào độ tuổi ba mươi của mình, niềm tin Kitô giáo của Newton nếu công khai ra sẽ không được coi là chính thống.[6]
Cũng có các nhà triết học trước như Galileo và John Philoponus sử dụng phương pháp thực nghiệm, nhưng Newton là người đầu tiên định nghĩa cụ thể và hệ thống cách sử dụng phương pháp này. Phương pháp của ông cân bằng giữa lý thuyết và thực nghiệm, giữa toán học và cơ học. Ông toán học hoá mọi khoa học về tự nhiên, đơn giản hoá chúng thành các bước chặt chẽ, tổng quát và hợp lý, tạo nên sự bắt đầu của Kỷ nguyên Suy luận. Những nguyên lý mà Newton đưa ra do đó vẫn giữ nguyên giá trị cho đến thời đại ngày nay. Sau khi ông ra đi, những phương pháp của ông đã mang lại những thành tựu khoa học lớn gấp bội những gì mà ông có thể tưởng tượng lúc sinh thời. Các thành quả này là nền tảng cho nền công nghệ mà chúng ta được hưởng ngày nay.
Không ngoa dụ chút nào khi nói rằng Newton là danh nhân quan trọng nhất đóng góp cho sự phát triển của khoa học hiện đại. Như nhà thơ Alexander Pope đã viết:
Nature and nature's laws lay hid in night; God said "Let Newton be" and all was light. | Tự nhiên và luật tự nhiên lẩn khuất trong màn đêm phủ; Chúa phán: Newton hãy xuất hiện! Và mọi thứ chói lòa. |
Tiểu sử
Quyển Philosophiae Naturalis Principia Mathemaa của Newton
Isaac Newton (Bolton, Sarah K. Famous Men of Science NY: Thomas Y. Crowell & Co., 1889)
Isaac Newton sinh ra tại một ngôi nhà ở Woolsthorpe, gần Grantham ở Lincolnshire, Anh, vào ngày 25 tháng 12 năm 1642 (4 tháng 1 năm 1643 theo lịch mới). Ông chưa một lần nhìn thấy mặt cha, do cha ông, một nông dân cũng tên là Isaac Newton Sr., mất trước khi ông sinh ra không lâu. Sống không hạnh phúc với cha dượng từ nhỏ, Newton bắt đầu những năm học phổ thông trầm uất, xa nhà và bị gián đoạn bởi các biến cố gia đình. May mắn là do không có khả năng điều hành tài chính trong vai anh cả sau khi cha dượng mất, ông tiếp tục được cho học đại học (trường Trinity College Cambridge) sau phổ thông vào năm 1661, sử dụng học bổng của trường với điều kiện phải phục dịch các học sinh đóng học phí.
Mục tiêu ban đầu của Newton tại Đại học Cambridge là tấm bằng luật sư với chương trình nặng về triết học của Aristotle, nhưng ông nhanh chóng bị cuốn hút bởi toán học của Descartes, thiên văn học của Galileo và cả quang học của Kepler. Ông đã viết trong thời gian này: "Plato là bạn của tôi, Aristotle là bạn của tôi, nhưng sự thật mới là người bạn thân thiết nhất của tôi". Tuy nhiên, đa phần kiến thức toán học cao cấp nhất thời bấy giờ, Newton tiếp cận được là nhờ đọc thêm sách, đặc biệt là từ sau năm 1663, gồm các cuốn Elements của Euclid, Clavis Mathemaa của William Oughtred, La Géométrie của Descartes, Geometria a Renato Des Cartes của Frans van Schooten, Algebra của Wallis và các công trình của François Viète.
Ngay sau khi nhận bằng tốt nghiệp, năm 1630, ông phải trở về nhà 2 năm vì trường đóng cửa do bệnh dịch hạch lan truyền. Hai năm này chứng kiến một loạt các phát triển quan trọng của Newton với phương pháp tính vi phân và tích phân hoàn toàn mới, thống nhất và đơn giản hoá nhiều phương pháp tính khác nhau thời bấy giờ để giải quyết những bài toán có vẻ không liên quan trực tiếp đến nhau như tìm diện tích, tìm tiếp tuyến, độ dài đường cong và cực trị của hàm. Tài năng toán học của ông nhanh chóng được hiệu trưởng của Cambridge nhận ra khi trường mở cửa trở lại. Ông được nhận làm giảng viên của trường năm 1670, sau khi hoàn thành thạc sĩ, và bắt đầu nghiên cứu và giảng về quang học. Ông lần đầu chứng minh ánh sáng trắng thực ra được tạo thành bởi nhiều màu sắc, và đưa ra cải tiến cho kính thiên văn sử dụng gương thay thấu kính để hạn chế sự nhoè ảnh do tán sắc ánh sáng qua thuỷ tinh.
Isaac Newton ở tuổi già năm 1712, chân dung của Sir James Thornhill
Newton được bầu vào Hội Khoa học Hoàng gia Anh năm 1672 và bắt đầu vấp phải các phản bác từ Huygens và Hooke về lý thuyết hạt ánh sáng của ông. Lý thuyết về màu sắc ánh sáng của ông cũng bị một tác giả phản bác và cuộc tranh cãi đã dẫn đến suy sụp tinh thần cho Newton vào năm 1678. Năm 1679 Newton và Hooke tham gia vào một cuộc tranh luận mới về quỹ đạo của thiên thể trong trọng trường. Năm 1684, Halley thuyết phục được Newton xuất bản các tính toán sau cuộc tranh luận này trong quyển Philosophiae Naturalis Principia Mathemaa. Quyển sách đã mang lại cho Newton tiếng tăm vượt ra ngoài nước Anh, đến châu Âu.
Năm 1685, chính trị nước Anh thay đổi dưới sự trị vì của James II, và trường Cambridge phải tuân thủ những điều luật phi lý như buộc phải cấp bằng cho giáo chủ không thông qua thi cử. Newton kịch liệt phản đối những can thiệp này và sau khi James bị William III đánh bại, Newton được bầu vào Nghị viện Anh nhờ những đấu tranh chính trị của ông.
Năm 1693, sau nhiều năm làm thí nghiệm hoá học thất bại và sức khoẻ suy sụp nghiêm trọng, Newton từ bỏ khoa học, rời Cambridge để về nhận chức trong chính quyền tại Luân Đôn. Newton tích cực tham gia hoạt động chính trị và trở nên giàu có nhờ bổng lộc nhà nước. Năm 1703 Newton được bầu làm chủ tịch Hội Khoa học Hoàng gia Anh và giữ chức vụ đó trong suốt phần còn lại của cuộc đời ông. Ông được Nữ hoàng phong bá tước năm 1705. việc ai phát minh ra vi phân và tích phân, Newton và Lepnic không bao giờ tranh luận cả, nhưng các người hâm mộ lại tranh cãi quyết liệt khiến hai nhà khoa học vĩ đại này cảm thấy xấu hổ. Ông mất ngày 31 tháng 3 năm 1727 tại Luân Đôn.
Nghiên cứu khoa học
Quang học
Quyển Opks của Newton
Minh họa hiện tượng Tán sắc ánh sáng trắng thành nhiều màu khác nhau qua lăng kính, được phát hiện bởi Newton
Từ năm 1670 đến 1672, Newton diễn thuyết về quang học. Trong khoảng thời gian này ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu, và một thấu kính hay một lăng kính sẽ hội tụ các dãy màu thành ánh sáng trắng.
Newton còn cho thấy rằng ánh sáng màu không thay đổi tính chất, bằng việc phân tích các tia màu và chiếu vào các vật khác nhau. Newton chú ý rằng dù là gì đi nữa, phản xạ, tán xạ hay truyền qua, màu sắc vẫn giữ nguyên. Vì thế màu mà ta quan sát là kết quả vật tương tác với các ánh sáng đã có sẵn màu sắc, không phải là kết quả của vật tạo ra màu.
Bản sao kính thiên văn phản xạ thứ hai của Newton mà ông đã trình bày cho Hội khoa học Hoàng gia vào năm 1672
Nhờ vào những khám phá trên, Newton nhận ra nguyên nhân gây ra sự sai lệch màu của hình ảnh trên kính viễn vọng khúc xạ thời đó. Ông đã áp dụng nguyên lý của James Gregory để tạo ra kính viễn vọng phản xạ đầu tiên, khắc phục được nhiều nhược điểm về ảnh của kính viễn vọng khúc xạ đồng thời giảm đi đáng kể chiều dài của kính viễn vọng.
Quả táo Newton
Bài này là một bản dịch thô từ ngôn ngữ khác. Đây có thể là kết quả của máy tính hoặc của người chưa thông thạo dịch thuật. Xin hãy giúp tăng chất lượng bản dịch. |
Sau khi Newton công bố định luật vạn vật hấp dẫn, giới khoa học lưu truyền câu chuyện quả táo rơi trúng đầu Newton liệu có mối liên hệ giữa khối lượng và khoảng cách của vật thể trong nhà vật lý vĩ đại này. Thế nhưng, nhiều ý kiến cho rằng đó chỉ là câu chuyện thêu dệt, chỉ là một huyền thoại và rằng ông đã không xây dựng lý thuyết về lực hấp dẫn ở bất cứ thời điểm duy nhất nào.
Tuy nhiên, với bản thảo viết tay Memoirs of Life Sir Isaac Newton có từ năm 1752, nhà khoa học William Stukeley (một người quen của Newton) kể lại chi tiết về khoảng khắc khi Newton tìm ra thuyết vạn vật hấp dẫn.
Bài viết của Stukeley kể về những suy nghĩ của Newton về thuyết lực hấp dẫn khi hai người ngồi dưới bóng râm cây táo trong vườn của nhà khoa học, tại Kensington vào ngày 15 tháng 4 năm 1726: [7]
Chúng tôi đã đi vào một khu vườn, và uống trà dưới bóng mát của vườn táo; chỉ có ông, và tôi. Ông nói với tôi, chính ở vị trí này, vào thuở trước khái niệm về lực hấp dẫn đã đến trong tâm trí.Thời điểm đó ông đang ngồi chiêm nghiệm và một quả táo rơi xuống. Ông đã nghĩ tại sao quả táo lại rơi thẳng xuống đất?
Quả táo chín rồi, tại sao lại rơi xuống đất? Tại vì gió thổi chăng? Không phải, khoảng không rộng mênh mông, tại sao lại phải rơi xuống mà không bay lên trời? Như vậy trái đất có cái gì hút nó sao? Mọi vật trên trái đất đều có sức nặng, hòn đã ném đi rốt cuộc lại rơi xuống đất, trọng lượng của mọi vật có phải là kết quả của lực hút trái đất không?
Tại sao nó không đi ngang, hoặc đi lên ? Nhưng lại liên tục đến trung tâm trái đất ? Chắc chắn, không lý nào khác rằng trái đất đã hút nó. Phải có một sức mạnh hút kéo vật chất & tổng sức mạnh hút kéo trong vấn đề trái đất phải được ở trung tâm đất, không phải trong bất kỳ bên của trái đất do đó đó quả táo này có rơi vuông góc, hay hướng về trung tâm nếu có vấn đề do đó hút lấy vật chất.. nó phải được cân đối với lượng của nó do đó táo rút ra trái đất., cũng như trái đất thu hút sự táo.
John Conduitt, trợ lý của Newton tại Royal Mint và chồng của cô cháu gái của Newton, cũng mô tả các sự kiện khi ông đã viết về cuộc sống của Newton:
Vào năm 1666, ông nghỉ hưu từ Cambridge với mẹ ông ở Lincolnshire. Trong khi đang lang thang trầm tư trong vườn, thì đến hiện ý tưởng rằng sức mạnh của lực hấp dẫn (đã mang quả táo từ trên cây rơi xuống đất) không bị giới hạn trong một khoảng cách nhất định từ trái đất, nhưng sức mạnh này phải trải rộng ra xa hơn là thường nghĩ. Tại sao không cao như mặt trăng nói ông đến mình, và nếu như vậy, mà phải ảnh hưởng đến chuyển động của mặt trăng và có lẽ giữ lại trong quỹ đạo của nó, từ đó ông lao vào tính toán những gì sẽ là kết quả của giả thiết đó.
Trong một việc tương tự, Voltaire đã viết trong cuốn tiểu luận về Epic Thơ (1727), "Sir Isaac Newton đi bộ trong khu vườn của mình, có những suy nghĩ đầu tiên của hệ thống hấp dẫn của ông, khi thấy một quả táo rơi xuống từ một cây."
Newton đã phải vật lộn trong cuối thập kỷ 1660 với ý tưởng rằng lực hấp dẫn tương tác trên mặt đất, trong một tỷ lệ nghịch với bình phương khoảng cách; Tuy nhiên ông đã phải mất hai thập kỷ để phát triển các lý thuyết đầy đủ. Câu hỏi đặt ra không phải là liệu trọng lực tồn tại, nhưng liệu nó có mở rộng để cách xa Trái đất mà nó còn có thể là lực giữ mặt trăng trên quỹ đạo của nó. Newton đã chỉ ra rằng nếu lực tương tác giảm tỉ lệ nghịch với khoảng cách, người ta có thể tính toán chu kỳ quỹ đạo của Mặt trăng một cách thống nhất. Ông đoán một loại lực chung là nguyên do của mọi chuyển động quỹ đạo, và do đó đặt tên nó là "lực vạn vật hấp dẫn".
Sau này Newton nêu ra: Mọi vật trên trái đất đều chịu sức hút của trái đất, mặt trăng cũng chịu sức hút của trái đất, đồng thời trái đất cũng chịu sức hút của mặt trăng; Trái đất chịu sức hút của mặt trời, mặt trời đồng thời cũng chịu sức hút của trái đất. Nói một cách khác là vạn vật trong vũ trụ đều có lực hấp dẫn lẫn nhau, vì có loại lực hấp dẫn này mà mặt trăng mới quay quanh trái đất, trái đất mới quay quanh mặt trời.
Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.
Luận thuyết của ông về Philosophiae Naturalis Principia Mathemaa (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học.
Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu.
Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát.
Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein.[3]
Nền hóa học Nga cho đến giữa thế kỷ XVIII hầu như vẫn bị mờ nhạt bên cạnh những hoạt động sôi nổi của các nhà hóa học ở các nước châu Âu. Lúc này thuyết Phlôgistôn đang ở giai đoạn phồn thịnh và được thừa nhận khắp châu Âu. Quan niệm về Phlôgistôn trong quá trình cháy đã hồi sinh cho những quan niệm cổ về vai trò của các chất lỏng không có trọng lượng trong các quá trình hóa học, đặc biệt là quan niệm coi nhiệt như một chất lỏng không có trọng lượng, có khả năng chảy từ vật này sang vật thể khác. Tuy rằng đầu thế kỷ XVIII một số nhà vật lý học như Đêcac, Huc nêu nhiều lý lẽ bác bỏ quan niệm này và chứng minh cho quan niệm cơ học về bản chất nhiệt, nhưng đến giữa thế kỷ XVIII thì ý kiến của họ hầu như bị lãng quên.
Trong tình hình chung như vậy, ở Nga xuất hiện nhà bác học vĩ đại M.V. Lômônôxôp (1711-1765), một trong những đại diện xuất sắc nhất của nền khoa học Nga thế kỷ XVIII. Mikhain Vaxilievic Lômônôxôp sinh năm 1711 thuộc tỉnh Ackhăngen, con trai một người nông dân ven biển vừa làm ruộng, vừa đánh cá. Vùng biển phía Bắc nước Nga lúc đó không có ách chiếm hữu ruộng đất của địa chủ nên trở thành một vùng trù phú có trình độ văn hóa phát triển cao, đó là quê hương của những người dũng cảm và những nhà sáng chế. Tháng 12 năm 1730 được sự đồng ý của cha, Lômônôxôp được lên Matxcơva để học tập. Ông được nhận vào Viện hàn lâm Slavơ - Hy Lạp. Năm 1736, Ông được gửi đến trường đại học của Viện Hàn lâm khoa học Petecbua và sau vài tháng được cử sang Đức học tập. Sau 5 năm trở về nước, năm 1745 Ông được cử làm giáo sư (viện sĩ) Hóa học. Năm 1748 phòng thí nghiệm hóa học ở Viện hàn lâm khoa học được xây dựng xong và suốt 10 năm (1748-1757) hoạt động chủ yếu của Lômônôxôp là nghiên cứu khoa học lý thuyết và thực nghiệm.
Lômônôxôp là nhà bác học bách khoa, Ông vừa là nhà hóa học xuất sắc lại vừa nổi tiếng như một nhà vật lý học, khoáng vật học và tinh thể học, địa lý, thiên văn học, luyện kim, quang học, lịch sử, thi sĩ, nghệ sĩ,…Nhà thơ Nga thiên tài Puskin đã viết về Ông: “Lômônôxôp xây dựng trường đại học đầu tiên của nước Nga và nói cho đúng hơn Ông chính là trường Đại học đầu tiên của nước Nga.”
Thuyết nguyên tử - phân tử (lúc đó gọi là thuyết hạt) được Lômônôxôp quan tâm đến từ khi còn học ở Đức. Mặc dù rất kính trọng thầy giáo của mình là Vônphơ nhưng Ông vẫn không đồng ý với Vônphơ là người theo thuyết đơn tử của Gatxenđi. Từ đó Lômônôxôp bắt đầu phát triển thuyết hạt của mình một cách độc lập, không phụ thuộc vào những quan niệm sẵn có.
Theo Lômônôxôp tất cả mọi chất đều cấu tạo từ những hạt hay phân tử, hạt là tập hợp các nguyên tố hay nguyên tử. Lômônôxôp đã dùng thuyết hạt của mình để giải thích các hiện tượng vật lý và hóa học, đặc biệt là sự chuyển từ trạng thái rắn sang trạng thái lỏng, sự tan lẫn vào nhau của các chất lỏng và nhiều tính chất của vật thể. Các “nguyên tố” và “hạt” của Lômônôxôp là những vi thể có kích thước, có hình dáng xác định (hình cầu), có trọng lượng và chuyển động liên tục.
Trong bản luận văn “Kiểm nghiệm lý thuyết về áp suất không khí” viết năm 1748 Ông đã xem xét mối liên hệ giữa áp suất không khí với mật độ của không khí theo quan điểm của thuyết động học phân tử. Một cống hiến quan trọng của Lômônôxôp cho khoa học là lý thuyết cơ học về nhiệt hay thuyết nguyên tử - phân tử về nhiệt. Cùng trong một hệ thống tư duy chung và liên hệ chặt chẽ với thuyết hạt và quan niệm động học phân tử, Lômônôxôp còn đề ra quan niệm về sự bảo toàn vật chất và chuyển động. Ngoài những hoạt động lý thuyết, Lômônôxôp còn tiến hành nhiều công trình nghiên cứu thực nghiệm. Ông đã nghiên cứu cơ chế hòa tan kim loại trong các dung dịch axit và muối, và trình bày kết quả trong luận văn “Về tác dụng của các dung môi hóa học nói chung” (năm 1744). Lômônôxôp kiên trì đề nghị xây dựng một phòng thí nghệm hóa học cho viện hàn lâm khoa học Petecbua để có thể tiến hành những công trình nghiên cứu thực nghiệm một cách hệ thống nhằm kiểm tra các quan điểm lý thuyết. Tuy nhiên Lômônôxôp không thể tiến hành thí nghiệm như kế hoạch đã định vì các quan điểm lý thuyết của ông không được chính quyền và các bạn đồng sự tán thành. Ông chuyển sang nghiên cứu giải quyết các vấn đề kĩ thuật hóa học. Ông đã đề ra công thức chế tạo thủy tinh màu để khảm những bức tranh có trình độ nghệ thuật cao.
Tuy rằng lúc này hóa học chỉ mới là tập hợp các kiến thức thực nghiệm mà chưa có một cơ sở khoa học thực sự nào để chứng minh, giải thích các hiện tượng, do đó chưa thể coi hóa học là một khoa học thật sự, nhưng Lômônôxôp đã xem hóa học không phải như một nghệ thuật chế tạo ra các chất mà ông gọi hóa học là “ Khoa học về những biến đổi xẩy ra trong vật thể hỗn hợp”. Lômônôxôp cũng là người đầu tiên sáng lập ra môn Hóa lý. Năm 1752 Ông đã giảng giáo trình Hóa lý cho sinh viên tại trường Đại học của viện hàn lâm khoa học Pêtecbua.
Qua việc mô tả những công trình của Lômônôxôp, chúng ta thấy các quan điểm lý thuyết cũng như hoạt động thực hành và giảng dạy của ông lập thành một hệ thống nhất quán dựa trên quan điểm duy vật về cấu tạo hạt và sự bảo toàn vật chất cũng như chuyển động. Có thể nói Lômônôxôp đã vượt trước thời đại của mình hàng chục năm, đã hình dung rõ con đường phát triển của hóa học trong tương lai.
Hoạt động khoa học phong phú của Lômônôxôp đã có ảnh hưởng đến sự phát triển khoa học ở nước Nga sau này và cho đến nay tên tuổi của Lômônôxôp vẫn được coi là ngọn cờ tiêu biểu đầu tiên cho truyền thống yêu nước của các nhà hóa học Nga. Cũng cần nhắc thêm là, chính theo sáng kiến và đề án của Ông, năm 1755 Trường Đại học Matxcơva được thành lập và giữ vai trò to lớn đối với sự nghiệp phát triển khoa học ở Nga.
Hai nhà Bác học Lomonoxop và Lavoadie: Hai nhà Bác học lomonoxop (1774) người Nga và Lavoadie người Pháp (1785), độc lập với nhau, đã tiến hành những thí nghiệm nung kim loại trong bình kín.Thời đó còn chưa biết có những chất gì trong không khí, chưa có bằng chứng xác thực về sự tồn tại của nguyên tử, phân tử.Hai ông đã cẩn thận và đưa ra những kết luận làm cơ sở cho định luật bảo toàn khối lượng
Sir Isaac Newton PRS là một nhà toán học, nhà vật lý, nhà thiên văn học, nhà thần học, và tác giả người Anh, người được công nhận rộng rãi là một trong những nhà toán học vĩ đại nhất và nhà khoa học ảnh hưởng nhất mọi thời đại và là một hình ảnh điển hình trong cách mạng khoa học. Wikipedia
Ngày/nơi sinh: 4 tháng 1, 1643, Woolsthorpe Manor House, Vương Quốc Anh
Ngày mất: 31 tháng 3, 1727, Kensington, Luân Đôn, Vương Quốc Anh
Nơi chôn cất: Tu viện Westminster, Luân Đôn, Vương Quốc Anh
Tl
Bn tìm trong wikipidia là có
Hok tốt