Tìm số có 2 chữ số. Biết rằng số này kém 4 lần tổng các chữ số cuarnos 3 đơn vị , nếu thêm 25đơn vị vào số đó , thì được số mới hơn số viết ngược lại với số đó 2 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi ạ.Em mới lớp 4 nên ko giải được thật lòng muốn giúp
Gọi hai chữ số đó là \(\overline{xy}\)
Ta có \(x=y+5\)
\(\Rightarrow\)số mới là \(\overline{\left(y+5\right)y}=10y\left(y+5\right)+y=11y+50\)
Nếu ta đổi ngược lại: \(\overline{y\left(y+5\right)}\)
\(10y+\left(y+5\right)=11y+5\)
\(\Leftrightarrow11y+50=2\left(11y+5\right)+18\)
\(\Leftrightarrow11y+50=22y+28\)
\(\Leftrightarrow x=7;y=2\)
Vậy số lúc đầu là 72
Trả lời :
Bn Hoàng Trần Bảo Nam đừng bình luận linh tinh nhé.
- Hok tốt !
^_^
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :
Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình:
\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔ 2a-b=0(1)
Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :
\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:
\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...