a) cho a < b , chứng minh: 7 - 5a > 2 - 5b.
b) cho m<n , chứng minh : 2m - 5 < 2n - 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
ta có:\(a< b\Rightarrow4a< 4b\) và \(1< 3\)
\(\Rightarrow4a+1< 4b+3\)
Câu b tương tự nhưng nhớ đổi dấu khi nhân vs số âm
Ta sẽ lần lượt chứng minh:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)và \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Ta có: \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)
\(\Leftrightarrow\)a(5b+2d)<b(5a+2c)
\(\Leftrightarrow\)5ab+2ad<5ab+2bc
\(\Leftrightarrow\)2ad<2bc\(\Leftrightarrow\)ad<bc\(\Leftrightarrow\)\(\frac{a}{b}\)<\(\frac{c}{d}\)(đúng theo giả thiết)
Do vậy:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)
Với lập luận tương tự ta cũng chứng minh được \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Vậy \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Đăng đúng môn hộ mình :)
Ta có: \(a< b\Leftrightarrow-5a>-5b\Leftrightarrow-5a+4>-5b+4\)
( Nhớ ghi mấy cái mà nhân -5 vào 2 vế rồi.................)
1, Vì m > 2
\(\Rightarrow\) m - 2 > 2 - 2
\(\Rightarrow\) m(m - 2) > m(2 - 2)
\(\Rightarrow\) m2 - 2m > 0
a < 0; b < 0; a > b
\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))
Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn
Chúc bn học tốt!!
a) vì a<b
<=>-5a>-5b
mà 7>2
<=>7-5a>2-5b
b) vì m<n <=>2m<2n<=>2m-5<2n-5