K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: GN và GQ là hai tia đối nhau

=>G nằm giữa N và Q

mà GN=GQ

nên G là trung điểm của NQ

Ta có: GP và GM là hai tia đối nhau

=>G nằm giữa P và M

mà GP=GM

nên G là trung điểm của PM

Xét tứ giác MNPQ có

G là trung điểm chung của MP và NQ

=>MNPQ là hình bình hành

b: Ta có: ΔABC cân tại A

=>AB=AC(1)

Ta có: M là trung điểm của AC

=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)

Ta có: N là trung điểm của AB

=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=CM=AN=BN

Xét ΔAMB và ΔANC có

AM=AN

\(\widehat{BAM}\) chung

AB=AC

Do đó: ΔAMB=ΔANC

=>BM=CN

Xét ΔABC có

BM,CN là các đường trung tuyến

BM cắt CN tại G

Do đó: G là trọng tâm của ΔABC

=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)

mà BM=CN

nên MG=NG

G là trung điểm của QN

nên QN=2NG

G là trung điểm của MP

nên MP=2MQ

Ta có: MG=NG

mà QN=2NG và MP=2MQ

nên QN=MP

Hình bình hành MNPQ có NQ=MP

nên MNPQ là hình chữ nhật

1:

Xét ΔBAC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

BG+CG>BC

=>2/3BM+2/3CN>BC

=>2/3(BM+CN)>BC

=>BM+CN>3/2BC

2:
BF=2BE

=>EF=BE

=>EF=2ED

=>D là trung điểm của EF

Xét ΔFEC có

CD,EK là trung tuyến

CD cắt EK tại G

=>G là trọng tâm

b: G là trọng tâm của ΔFEC

=>GE/GK=1/2 và GC/DC=2

20 tháng 4 2022

giúp mik với đang cần gấp lém :((
ét-o-ét 

a: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)

1 tháng 5 2019

bạn ơi, coi lại đề hộ mình với ạ

1: Xét ΔAMP và ΔCMG có

MA=MC

góc AMP=góc CMG

MP=MG

Do đo: ΔAMP=ΔCMG

2: Xét tứ giác BQPN có

G là trung điểm của BP

G là trung điểm của QN

Do đó: BQPN là hình bình hành

Suy ra: BQ=PN