K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Ta có x\(^{2006}\)\(\ge\)0

x\(^{2004}\)\(\ge\)0

Nên x\(^{2006}\)+x\(^{2004}\)+7>0

suy ra đa thức A vô nghiệm

20 tháng 5 2021

Cho A(x) = 0, có:

x2 - 4x = 0

=> x (x - 4) = 0

=> x = 0 hay x - 4 = 0

=> x = 0 hay x = 4

Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)

25 tháng 5 2016

Đây là toán lớp 7 chứ bạn

25 tháng 5 2016

p(x)=0 q(x)=0 x^2+4x+10=0 x^2+x+1=0 x^2+2x+2x+4+6=0 x^2+1/2x+1/2x+1/4+3/4=0 x(x+2)+2(x+2)=-6 x(x+1/2)+1/2(x+1/2)+3/4=0 (x+2)(x+2) =-6 (x+1/2)(x+1/2) = -3/4 (x+2)^2 = -6 ( vô lí )

27 tháng 4 2016

\(A\left(x\right)=x^2-4x+7\)

\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)

\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)

\(\left(x-2\right)^2+3\ge3>0\) với mọi x E R

=>(1) không xảy ra

=>A(x) vô nghiệm   (đpcm)

\(p\left(x\right)=x^4+x^3+x+1\)

\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)

Vậy............................

21 tháng 5 2021

\(a)\)

\(\text{Ta có:}\)

\(x^2-2=0\)

\(\rightarrow x^2=x\)

\(\rightarrow x=\pm\sqrt{2}\)

Vậy ...

\(b)\)

\(\text{Ta có:}\)

\(x^2+5x+7\)

\(\rightarrow x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2\ge0\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy ...

21 tháng 5 2021

a, Đặt \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

b, Ta có : \(Q\left(x\right)=x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy đa thức ko có nghiệm 

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)

8 tháng 4 2018

a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)

Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x

=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x

=> f (x) vô nghiệm (đpcm)

b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x

=> P (x) vô nghiệm (đpcm)

mk giải cách lớp 7:

A(x) = x4 + 2x2 + 1

vì \(x^4\ge0\) với mọi x

\(2x^2\ge0\) với mọi x

=> \(x^4+2x^2+1\ge1>0\)

=> đa thức A(x) ko có nghiệm

26 tháng 5 2016

cách lớp 8. bạn đặt ẩn phụ la x2. đưa nó về bậc 2. rồi dùng đen ta là ra: nó sẽ ra đen ta <0 thì đa thức trên vô nghiêm. dễ mà. mà bạn biết đen ta rồi chứ. Đen ta = b2-4ac. hoac đen ta phẩy= b2-ac. 100% là ra

9 tháng 4 2021

a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3

Nghiệm của đa thức là x = 3

b)1. P(1) = \(1^4+2.1^2+1\) = 4

P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)

Ta có: P(x) = \(\left(x^2+1\right)^2\)

Vì \(\left(x^2+1\right)^2\) ≥ 0 

Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)

Vậy P(x) không có nghiệm

a) Đặt A(x)=0

\(\Leftrightarrow6-2x=0\)

\(\Leftrightarrow2x=6\)

hay x=3

Vậy: x=3 là nghiệm của đa thức A(x)

`@` `\text {Ans}`

`\downarrow`

`P(x) = x^2 + x + 1 =0`

Vì `x^2 \ge 0 AA x`

`=> x^2 + x + 1 \ge 1 AA x`

Mà `1 \ne 0`

`=>` Đa thức `P(x)` vô nghiệm.

Hoặc bạn có thể sử dụng cách này (dễ hình dung hơn)

`P(x) = x^2 + x + 1 =0`

`=> x^2 + 2*1/2x + 1/4 + 3/4 =0`

`=> x(x+1/2) + 1/2(x+1/2) + 3/4=0`

`=> (x+1/2)(x+1/2)+3/4=0`

`=> (x+1/2)^2 + 3/4 = 0`

Mà `(x+1/2)^2 \ge 3/4 > 0 AA x`

`=>` Đa thức P(x) vô nghiệm.

18 tháng 6 2023

\(P\left(x\right)=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

=> vô nghiệm