Xác định bậc,hệ số tự do,hệ số cao nhất của đa thức :
A(x)= \(-x^4+x^3-2x^2\) \(+x-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em muốn hỏi bài nào vậy? Quá nhiều bài thầy cô và các bạn không thể trả lời được hết em ạ
a: Bậc là 4
Hệ só tự do -5
b: Bậc là 5
Hệ số tự do là 1
c: Bậc là 4
Hệ số tự do là 4
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
\(3x^5+3x^4-2x^3+7\)
bậc là 5
Hệ số cao nhất là 3
Hệ số tự do là 7
a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5
=6x^5-4x^3+29x^2-2x+2
b: bậc của P(x) là 5
c: hệ số lớn nhất là 6
Hệ số tự do là 2
P(-1)=-6+4+29+2+2=29+2=31
a, A(x)+B(x)=\(\left(3x^2-4x+5\right)+\left(3x^2+2x-5\right)\)
A(x)+B(x)=\(3x^2-4x+5+3x^2+2x-5\)
A(x)+B(x)=\(6x^2-2x\)
b, đa thức A(x) bậc 3
đa thức B(x) bậc 3
c, A(x)-B(x)=\(\left(3x^2-4x+5\right)-\left(3x^2+2x-5\right)\)
A(x)-B(x)=\(3x^2-4x+5-3x^2-2x+5\)
A(x)-B(x)=-6x+10
\(\Rightarrow\) A(x)-B(x) bậc 1
\(f\left(x\right)=-x-7x^2+6x^3-3x^4-2x^2-6x+2x^4-1\)
\(f\left(x\right)=-x^4+6x^3-9x^2-7x-1\)
\(\Rightarrow\) Bậc của đa thức là \(4\), hệ số tự do là \(-1\), hệ số cao nhất của đa thức là \(-1\).
a: Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
=2x^2+5x-12+x^2-8x-1
=3x^2-3x-13
Bậc 4
Hệ số tự do -5
Hệ số cao nhất -2
Theo bt A, Ona có:
Bậc: 4
Hệ số tự do: 5
Hệ số cao nhất: -2