Cho sin a +cos a = 1/căn 2, tính tan2 +cot2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(tana+cota=3\Rightarrow\dfrac{sina}{cosa}+\dfrac{cosa}{sina}=3\)
\(\Rightarrow\dfrac{sin^2a+cos^2a}{sina\cdot cosa}=3\Rightarrow sina\cdot cosa=\dfrac{1}{3}\)
Ta có: \(\left(tana+cota\right)^2=9\)\(\Rightarrow tan^2a+cot^2a=9-2tana\cdot cota=9-2=7\)
Cho biết \(cosx=-\dfrac{1}{2}\)
\(sin^2x+cos^2x=1\Rightarrow sin^2x=1-cos^2x\)
\(\Rightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\)
\(S=4sin^2x+8tan^2x\)
\(\Rightarrow S=4\left(sin^2x+2\dfrac{sin^2x}{cos^2x}\right)\)
\(\Rightarrow S=4\left(\dfrac{3}{4}+2\dfrac{\dfrac{3}{4}}{\dfrac{1}{4}}\right)\)
\(\Rightarrow S=4\left(\dfrac{3}{4}+6\right)\)
\(\Rightarrow S=4.\dfrac{27}{4}=27\)
1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)
⇔ \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)
2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)
⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)
⇔ sinx . si
a) \(tan3\alpha-tan2\alpha-tan\alpha=\left(tan3\alpha-tan\alpha\right)-tan2\alpha\)
\(=\left(\dfrac{sin3\alpha}{cos3\alpha}-\dfrac{sin\alpha}{cos\alpha}\right)-\dfrac{sin2\alpha}{cos2\alpha}\)\(=\dfrac{sin3\alpha cos\alpha-cos3\alpha sin\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=\dfrac{sin2\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=sin2\alpha.\left(\dfrac{1}{cos3\alpha cos\alpha}-\dfrac{1}{cos2\alpha}\right)\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos3\alpha cos\alpha}{cos3\alpha cos\alpha cos2\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-\dfrac{1}{2}\left(cos4\alpha+cos2\alpha\right)}{cos3\alpha cos2\alpha cos\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos4\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=\dfrac{sin2\alpha.2sin3\alpha.sin\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=tan3\alpha tan2\alpha tan\alpha\) (Đpcm).
b) \(\dfrac{4tan\alpha\left(1-tan^2\alpha\right)}{\left(1+tan^2\right)^2}=4tan\alpha\left(1-tan^2\alpha\right):\left(\dfrac{1}{cos^2\alpha}\right)^2\)
\(=4tan\alpha\left(1-tan^2\alpha\right)cos^4\alpha\)
\(=4\dfrac{sin\alpha}{cos\alpha}\left(1-\dfrac{sin^2\alpha}{cos^2\alpha}\right)cos^4\alpha\)
\(=4sin\alpha\left(cos^2\alpha-sin^2\alpha\right)cos\alpha\)
\(=4sin\alpha cos\alpha.cos2\alpha\)
\(=2.sin2\alpha.cos2\alpha=sin4\alpha\) (Đpcm).
a: \(sinx+cosx=\sqrt{2}\)
=>\(\left(sinx+cosx\right)^2=2\)
=>\(1+2\cdot sinx\cdot cosx=2\)
=>\(2\cdot sinx\cdot cosx=1\)
=>\(sinx\cdot cosx=\dfrac{1}{2}\)
b: \(\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4\cdot sinx\cdot cosx\)
\(=2-4\cdot\dfrac{1}{2}=2-2=0\)
=>\(sinx-cosx=0\)
c: \(sinx-cosx=0\)
\(sinx+cosx=\sqrt{2}\)
Do đó: \(sinx=cosx=\dfrac{\sqrt{2}}{2}\)
\(sina+cosa=\frac{1}{\sqrt{2}}\Rightarrow\left(sina+cosa\right)^2=\frac{1}{2}\Rightarrow1+2sina.cosa=\frac{1}{2}\)
\(\Rightarrow sina.cosa=-\frac{1}{4}\)
\(tan^2a+cot^2a=\left(tana+cota\right)^2-2=\left(\frac{sina}{cosa}+\frac{cosa}{sina}\right)^2-2=\frac{1}{\left(sina.cosa\right)^2}-2\)
\(=\frac{1}{\left(-\frac{1}{4}\right)^2}-2=14\)