K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4 2019

\(sin^3A.sin\left(B-C\right)=sin^2A.sinA.sin\left(B-C\right)\)

\(=sin^2A.sin\left(B+C\right).sin\left(B-C\right)=-\frac{1}{2}sin^2A\left(cos2B-cos2C\right)\)

\(=-\frac{1}{2}sin^2A\left(1-2sin^2B-1+2sin^2C\right)=sin^2A.sin^2B-sin^2A.sin^2C\)

26 tháng 9 2017

\(S=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-cot^2a.cot^2b=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-\frac{cos^2a.cos^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a-sin^2b-cos^2a.cos^2b}{sin^2a.sin^2b}=\frac{cos^2a-cos^2a.cos^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a\left(1-cos^2b\right)-sin^2b}{sin^2a.sin^2b}=\frac{cos^2a.sin^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{sin^2b\left(cos^2a-1\right)}{sin^2a.sin^2b}=\frac{-sin^2a.sin^2b}{sin^2a.sin^2b}=-1.\)

NV
21 tháng 2 2020

\(=sin^2a\left(1+cot^2a\right)=sin^2a\left(1+\frac{cos^2a}{sin^2a}\right)=sin^2a\left(\frac{sin^2a+cos^2a}{sin^2a}\right)=\frac{sin^2a}{sin^2a}=1\)

21 tháng 2 2020

cảm ơn bạn nhiều ạ

5 tháng 5 2018

phần chứng minh biểu thức không phụ thuộc \(x\)

ta có : \(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{cos^2a}{cot^2a}\)

\(=\dfrac{cot^2a-cos^2a+cos^2a}{cot^2a}=\dfrac{cot^2a}{cot^2a}=1\left(đpcm\right)\)

ý còn lại : xem lại đề nha bn

phần chứng minh đẳng thức

ta có : \(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=\dfrac{2sinacosa-2sina}{2sinacosa+2sina}+tan^2\dfrac{a}{2}\)

\(=\dfrac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}+tan^2\dfrac{a}{2}=\dfrac{cosa-1}{cosa+1}+tan^2\dfrac{a}{2}\)

\(=\dfrac{1-2sin^2\dfrac{a}{2}-1}{2cos^2\dfrac{a}{2}-1+1}+tan^2\dfrac{a}{2}=\dfrac{-2sin^2\dfrac{a}{2}}{2cos^2\dfrac{a}{2}}+tan^2\dfrac{a}{2}\)

\(=-tan^2\dfrac{a}{2}+tan^2\dfrac{a}{2}=0\left(đpcm\right)\)

ta có : \(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}\)

\(=\dfrac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\dfrac{2cosa+2}{sina\left(cosa+1\right)}\)

\(=\dfrac{2\left(cosa+1\right)}{sina\left(cosa+1\right)}=\dfrac{2}{sina}\left(đpcm\right)\)

còn 2 câu kia để chừng nào rảnh mk giải cho nha

11 tháng 5 2018

mk lm 2 câu còn lại nha

ta có : \(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=\dfrac{\left(1-cos^2x\right)\left(tan^2x-1\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=\dfrac{tan^2x-sin^2x-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\dfrac{sin^4x}{cos^2x}-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2-1\right)}\)

\(=\dfrac{tan^2x\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\left(tan^2x-1\right)\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=sinx+cosx\left(đpcm\right)\)

ta có : \(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-\dfrac{sin^2a.cos^2b}{cos^2a.sin^2b}}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{\dfrac{cos^2a.sin^2b-sin^2a.cos^2b}{cos^2a.sin^2b}}=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(sin^2a.cos^2b-cos^2a.sin^2b\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(\left(sina.cosb-cosa.sinb\right)\left(sina.cosb+cosa.sinb\right)\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-sin\left(a-b\right)sin\left(a+b\right)}=-cos^2a.sin^2b\left(đpcm\right)\)

mk lm hơi tắc ! do tối rồi , mà mk lại đang ở quán nek nên không tiện làm dài . bạn thông cảm

7 tháng 7 2017

Kẻ đường cao AD, BE và CF.

\(\Delta AEF~\Delta ABC\left(c.g.c\right)\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\cos^2A\)

\(\Delta BFD~\Delta BCA\left(c.g.c\right)\Rightarrow\dfrac{S_{BFD}}{S_{BCA}}=\left(\dfrac{BF}{BC}\right)^2=\cos^2B\)

\(\Delta CDE~\Delta CAB\left(c.g.c\right)\Rightarrow\dfrac{S_{CDE}}{S_{CAB}}=\left(\dfrac{CE}{CB}\right)^2=\cos^2C\)

\(\sin^2A+\sin^2B+\sin^2C=3-\left(\cos^2A+\cos^2B+\cos^2C\right)\)

\(=3-\left(\dfrac{S_{AEF}}{S_{ABC}}+\dfrac{S_{BFD}}{S_{BCA}}+\dfrac{S_{CDE}}{S_{CAB}}\right)>3-\dfrac{S_{ABC}}{S_{ABC}}=2\left(\text{đ}pcm\right)\)

6 tháng 9 2019

Ta có:
\(A + B + C = π \Rightarrow C = π - (A + B) \Rightarrow cosC = cos[π - (A + B)] = - cos(A + B) \)

\(P = Sin^2A+Sin^2B+Sin^2C = \dfrac{1 - cos2A}2 + \dfrac{1 - cos2B}2 + 1 - cos^2C\)

\(= 2 - \dfrac{cos2A + cosB}2 - cos^2(A+B)\)

\(= 2 - cos(A+B).cos(A-B) - cos^2(A+B)\)

\(= 2 - cos(A+B)[cos(A-B) + cos(A+B)]\)

\(= 2 - cos(A+B).2cosA.cosB\)

\(= 2 + 2.cosC.cosA.cosB \)
\(A ,B , C\) là các góc nhọn \(\Rightarrow\) \(cosC.cosA.cosB > 0\)

\(\Rightarrow\) \(P = Sin^2A+Sin^2B+Sin^2C > 2\)