Cho a,b > 0 chứng minh rằng : \(\frac{1}{a}\) + \(\frac{1}{b}\) ≥ \(\frac{4}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
dấu = xảy ra <=> x=y
Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)
dấu = xảy ra <=>a=b=1/2
\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)
\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)
\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )
Vậy.......
Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)
\(=\dfrac{9}{2}-3=1,5\)
Dấu " = " khi a = b = c
Bài 5:
Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)
Dấu " = " khi a = b = c = d = 1
7) VP phải là abc nha
\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế của 3 BĐT trên
\(\left[VT\right]^2\le VP^2\)
Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
Áp dụng bđt Cauchy - Schwarz dạng Engel:
\(VT=\frac{1}{4a}+\frac{4}{4b}+\frac{4}{4c}\ge\frac{\left(1+2+2\right)^2}{4\left(a+b+c\right)}=\frac{25}{4}\)
(Dấu "=" xảy ra khi \(a=\frac{1}{5};b=c=\frac{2}{5}\))
Ai muốn vào team tui không
Xin lỗi rất nhiều vì đã làm sai quy luật, nội quy ạ
Mong mọi người đừng chửi
Học Tốt
Ta có: \(\left(a-b\right)^2\ge0\forall a;b\\ \Rightarrow\left(a+b\right)^2-4ab\ge0\\ \Rightarrow\left(a+b\right)^2\ge4ab\\ \Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\\ \Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\) (vì xy(x+y) >0 với x,y > 0)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( Đúng)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Lời giải:
Xét hiệu:
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}\)
\(=\frac{(a+b)^2-4ab}{ab(a+b)}=\frac{a^2+2ab+b^2-4ab}{ab(a+b)}=\frac{a^2-2ab+b^2}{ab(a+b)}=\frac{(a-b)^2}{ab(a+b)}\geq 0, \forall a,b>0\)
\(\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\) (đpcm)
Dấu "=" xảy ra khi $a=b$