K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

trục hoành có phương trình y=0

\(\cos=\frac{1}{\sqrt{3+1}\sqrt{1}}=\frac{1}{2}\)

=> 60o

29 tháng 4 2019

ta có đt y = -\(\sqrt{3}\)x -1

\(-\sqrt{3}< 0\) hàm số của đt nghịch biến trên R

gọi α là góc tạo bởi đt với trục hoành, ta có tanα = -a = \(\sqrt{3}\)(a là hệ số góc)

nên α = 120o

29 tháng 4 2019

Đường thẳng được viết lại \(y=\sqrt{3}.x-1\)

                               \(\Rightarrow\)\(tan\alpha=\sqrt{3}\)

                               \(\Rightarrow\alpha=60^o\)

=> Chọn c

6 tháng 4 2016

Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)

Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)

\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))

\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)

\(\Leftrightarrow x=1;x=5\)

Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)

29 tháng 12 2020

Phần b mk chưa học nên chịu :v

a, Phương trình đường thẳng (d) là: y = ax + b 

Vì đường thẳng (d) song song với đường thẳng y = 3x + 1 nên

\(\Rightarrow\) \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)

Với a = 3 ta được pt đường thẳng (d): y = 3x + b

Vì đường thẳng (d) đi qua điểm A(3;7) nên thay x = 3; y = 7 ta được:

7 = 3.3 + b

\(\Leftrightarrow\) b = -2 (TM)

Vậy phương trình đường thẳng (d) là: y = 3x - 2

Chúc bn học tốt!

14 tháng 1 2019

Đáp án C

5 tháng 6 2017

a) Đúng. Giả sử A(a; b); O(0; 0) Giải bài tập Toán lớp 10

b) Đúng

c) Đúng

d) Đúng Vì tia phân giác của góc phần tư thứ nhất là đường thẳng y = x.

23 tháng 5 2020

\(\overrightarrow{n_{d1}}=\left(1;2\right)\) ; \(\overrightarrow{n_{d2}}=\left(3;m\right)\)

Ta có: cos(d1;d2) = \(\left|cos(\overrightarrow{n_{d1};}\overrightarrow{n_{d2}})\right|\) = \(\frac{\sqrt{2}}{2}\)

=> \(\frac{3+2m}{\sqrt{\left(3+m^2\right)5}}\) = \(\frac{\sqrt{2}}{2}\) ⇔ 2(3 + 2m) = \(\sqrt{10\left(3+m^2\right)}\)

=> ĐK: 3 + 2m > 0 ⇔ m > \(\frac{-3}{2}\)