K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) ∀x ∈ R

ta thấy \(2x^2-3x+2\)  (*)vô nghiệm => * luôn dương ( cx dấu vs a)

 

\(\left\{{}\begin{matrix}\dfrac{x^2+5x+m}{2x^2-3x+2}+1\ge0\\\dfrac{x^2+5x+m}{2x^2-3x+2}-7< 0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3x^{2^{ }}+2x+m+2\ge0\\-13x^2+26x+m-14< 0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\\\left[{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\end{matrix}\right.\)

.....

tới đây bạn tự thế số vào làm tiếp nhé 

 Đ\Á :[\(\dfrac{-5}{3}\);1)

 

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

19 tháng 12 2022

\(\Delta=\left(2m-2\right)^2-4\cdot1\cdot4=4m^2-8m+16-16=4m^2-8m\)

Để BPT luôn đúng thì 4m^2-8m<0

=>4m(m-2)<0

=>0<m<2

20 tháng 12 2022

\(x^2+2\left(m-1\right)x+4>0\forall x\inℝ\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-4< 0\)

\(\Leftrightarrow\left(m-3\right)\left(m+1\right)< 0\Leftrightarrow-1< m< 3\).

NV
29 tháng 4 2020

\(a=1>0;\) \(\Delta'=\left(m-1\right)^2-m+2=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\) ;\(\forall m\)

Để BPT thỏa mãn với \(\forall x\in\left[0;1\right]\Leftrightarrow x_1\le0< 1\le x_2\)

Đặt \(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-2\le0\\1-m\le0\end{matrix}\right.\)

\(\Rightarrow1\le m\le2\)

13 tháng 3 2019

1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow a\ge\frac{1}{2}\)

2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)

3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)

4, Nếu m=0 => f(x)=-2x-1<0 (loại)

Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

17 tháng 5 2020

f(x) ≤ 0 ∀ x∈ \([0;1]\)\(\left\{{}\begin{matrix}\Delta'>0\\\left(x_1-1\right)\left(x_2-1\right)\ge0\\x_1+x_2\ge2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}m^2-3m+3>0\\-m+1\ge0\\2m-2\ge2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\forall m\\m\le1\\m\ge2\end{matrix}\right.\)

⇔∅. Vậy không có giá trị m thỏa mãn