Cho đường tròn tâm O, điểm M cố định ngoài (O), kẻ 2 tiếp tuyến MA, MB với (O) (A, B là tiếp điểm). Trên cung nhỏ AB lấy điểm N. Từ N kẻ tiếp tuyến với (O) cắt MA, MB lần lượt tại E và F.
1. Chứng minh: Tứ giác AONE nội tiếp
2. Chứng minh: chu vi tam giác MEF và độ lớn EOF không phụ thuộc vị trí điểm N.
3. Giả sử AOB = 120°. Gọi I, K là giao điểm của OE và OF với AB. Tính tỉ số EF/IK.
4. Đường thẳng qua O vuông góc với OM cắt MA,MB lần lượt tại C và D. Tìm vị trí điểm N để ( EC+FD ) có độ dài nhỏ nhất