cho tam giác ABC vuông tại A vẽ đường cao AH,AB=6cm,AC=8cm
a)chứng minh tam giác HBA đồng dạng tam giác ABC
b)tính BC,AH,BH
c)gọi I và K lần lượt là hình chiếu của điểm H lên cạnh AB,AC. chứng minh AI.AB=AK.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét ΔABC và ΔHBA :
\(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
b. Xét ΔABC vuông tại A
Theo định lý Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) AH = 13,3 cm
\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) BH = 10 cm
c. Xét ΔAIH và ΔBAC :
\(\widehat{AIH}\) = \(\widehat{BAC}\) = 900
Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\) (phụ thuộc \(\widehat{HAC}\) )
\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)
\(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\)
\(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)
\(\Rightarrow\) AI . AB = AK. AC(đpcm)
a) Xét ΔABC và ΔHBA ta có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
⇒ΔABC∼ ΔHBA
b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:
\(BC^2=AB^2+AC^2\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì ΔABC ∼ ΔBHA(cmt)
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)
Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
\(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
c: ΔACB vuông tại A
mà AH là đường cao
nên AH^2=HB*HC
d: ΔAHB vuông tại H có HI vuông góc AB
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2=AI*AB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
BH=3,6(cm)
c: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
a) Xét tam giác HBA và tam giác ABC có:
góc B chung
góa AHB = góc CAB = 900
suy ra: tgiac HBA ~ tgiac ABC (g.g)
b) Áp dụng Pytago ta có:
AB2 + AC2 = BC2
=> BC2 = 62 + 82 = 100
=> BC = 10
Áp dụng hệ thức lượng ta có:
AB . AC = BC .AH
=> 6 . 8 = 10 . AH
=> AH = 4,8
AB2 = BH . BC
=> 36 = BH . 10
=> BH = 3,6
d) Áp dụng hệ thức lượng ta có:
AI . AB = AH2; AK . AC = AH2
suy ra: AI.AB = AK.AC
p/s: lần sau đăng bài bạn chọn cho đúng trình độ của lớp nha, như vậy người làm sẽ chọn cách phù hợp với khối đó
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^BHA = ^BAC = 900
Vậy tam giác HBA ~ tam giác ABC (g.g)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
b, Xét tam giác CHI và tan giác CAH có
^AIH = ^CHA = 900
^C _ chung
Vậy tam giác CHI ~ tam giác CAH (g.g)
\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
Do đó: ΔHBA\(\sim\)ΔABC
b: Xét ΔBAC có BD là phân giác
nên DA/DC=BA/BC(1)
Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA(2)
Ta có: ΔHBA\(\sim\)ΔABC
nên BA/BC=BH/BA(3)
Từ (1), (2) và (3) suy ra IH/IA=DA/DC
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)