K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2024

đặt a=16n   b=16m mà ƯCLN(n;m)=1 

ta có a+b=16n+16m=16(n+m)=128

=>n+m=128:16=8 tự giải nốt nha

 

25 tháng 8 2016

Do ƯCLN(a; b)=16 => a = 16.m; b = 16.n [(m;n)=1; (m > n)]

Ta có: 16.m + 16.n = 128

=> 16.(m + n) = 128

=> m + n = 128 : 16 = 8

Mà m > n; (m;n)=1 => m = 7; n = 1 hoặc m = 5; n = 3

+ Với m = 7; n = 1 thì a = 16.7 = 112; b = 16.1 = 16

+ Với m = 5; n = 3 thì a = 16.5 = 80; b = 16.3 = 48

Vậy các cặp số (a;b) thỏa mãn đề bài là: (112;16) ; (80;48)

3 tháng 9 2016

UCLN (a,b) - 6 nên a = 6a', b = 6b' và UCLN (a,b) = 1.

Theo đề bài a'b' = 63 =3.3.7

Do a > b nên a'>b'.' Chọn 2 số a' và b' có tích = 63, nguyên tố cùng nhau. a' > b' ta được.

  a' 63   9
  b' 1   7

Do đó.

   a387  54
   b  6  42
6 tháng 11 2016

Do ƯCLN ( a, b ) = 18 => a = 18a' ; b = 18b' [ a', b' thuộc N* ; ( a', b' ) = 1 ]
Khi đó:
a + b = 128
=> 18a' + 18b' = 128
=> 18 ( a' + b' ) = 128
=> a' + b' = 7,1111.... không thuộc N - loại
Vậy không có số tự nhiên a và b cần tìm.

6 tháng 11 2016

vậy ƯCLN(a,b)=18 -> Ư(18)={1;2;3;6;9;18}

13 tháng 12 2020

\(a=16a';b=16b'\left(\text{với a';b' nguyên dương và: (a',b')=1}\right)\Rightarrow a'+b'=8\)

đến đây vi a>b nên có các bộ nghiệm: 

(a',b') thuộc: {(8;0);(7;1);(6;2);(5;3)}

từ đây nhân 16 lên ra a,b

20 tháng 11 2016

Gọi a=mx16      b=nx16   (m;n thuộc tập hợp số tự nhiên;m>n va ƯCLN(m;n)=1)

Ta có : a+b=128<=>mx16+nx16=128=>16x(m+n)=128

                                                              m+n=128:16=8

vì ƯCLN(m;n)=1=>m và n là 2 số nguyên tố .Phân tích 8 thành tổng của 2 số hạng ta được

8=0+8=1+7=2+6=3+5=4+4

Vì a;b là số nguyên tố =>a=5 va b=3 theo điều kiện a>b

                                Đáp số : a=5

                                             b=3

                                                               

27 tháng 4 2017

a+b=128

ƯCLN (a,b)=16

ta có : 128:16=8

\(\frac{a}{16}+\frac{b}{16}=8\)

\(\frac{a+b}{16}=8\)

Phân tích 8 thành tổng của 2 số tự nhiên ta được :

8=5+3=1+7=2+6=0+8=4+4

Mà 3 x 16 + 5 x 16 = 48 + 80 =128

Nên a = 48

b=80

thõa mãn điều kiện

5 tháng 8 2016

Đặt a=16m , b=16n mà ƯCLN (m,n)=1 ( m, n thuộc N)

Ta có : a+b = 16m+16n=16(m+n)=128

=> m+n=128:16=8

Ta được m = 5 , n = 3 ; m = 7 , n = 1 

Vậy : a = 80 , b = 48  ; a = 112 ; b = 16

6 tháng 11 2017

I don’t no

28 tháng 11 2021

Vì ƯCLN ( a;b )=1\(\left\{{}\begin{matrix}a=16.m\\b=16.n\end{matrix}\right.\) ( m;n ∈ \(N\));(m;n)=1

Ta có : a+b=128

⇔ 16.m + 16.n = 128

⇔ 16.(m+n) = 128

⇔ m + n =128 : 16 = 8

Mà (m+n)=1⇔\(\left\{{}\begin{matrix}m=3\\n=5\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=7\\n=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=5\\n=3\end{matrix}\right.\)

Các cặp giá trị (a;b)tương ứng là ( 16;11;12 ) ; (48;80 ) ; ( 112;16 ) ;(80;48 )

5 tháng 11 2015

Đặt : a = 16x và b = 18y

Ta có : 16 ( x + y ) = 128

=> x + y = 8

=> x = 7 và y = 1

Vì a > b nên ta có a = 16x = 16.7 = 112

b = 128 - 112 = 16

Vậy ...

5 tháng 11 2015

Vì ƯCLN(a, b) = 16 => ta gọi a = 16n, b = 16m.

16n + 16m = 128

=> 16(m + n) = 128

=> n + m = 128 : 16 = 8 

 8 = 0 + 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4 

Vì a > b => n > m => n có thể bằng 8; 7; 6; 5 

m có thể bằng 0; 1; 2; 3 

Vì a > b => loại bỏ trường hợp 4 + 4 

=> (a; b) lần lượt là (128; 0) , (112; 16) ; (96; 32) ; (80; 48)

11 tháng 9 2020

con dien :C

11 tháng 9 2020

+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm

---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)

Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b

Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1

Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1

\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)

---> Nhân 6 hết lên là ra kết quả cuối cùng.

Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1

Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)

\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong

Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1

\(\Rightarrow6x.6y=216\Rightarrow xy=6\)

\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha

Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)

Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.

\(\Rightarrow3x.3y=180\Rightarrow xy=20\)

\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!