K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

Với mọi a;b dương ta có:

\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2=\dfrac{1}{2}\left(a^2+b^2\right).\left(a^2+b^2\right)\ge\dfrac{1}{2}.2ab.\left(a^2+b^2\right)=ab\left(a^2+b^2\right)\)

Và: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

Do đó:

\(A\le\sum\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+2020=\sum\dfrac{1}{a^2+b^2+1}+2020\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(\Rightarrow A\le\sum\dfrac{1}{x^3+y^3+1}+2020\le\sum\dfrac{1}{xy\left(x+y\right)+1}+2020\)

\(A\le\sum\dfrac{xyz}{xy\left(x+y\right)+xyz}+2020=\sum\dfrac{z}{x+y+z}+2020=1+2020=2021\)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 8 2020

Dễ thôi

Ta có:

\(ab+bc+ca+abc=4\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\) ( cái này cơ bản )

Theo AM - GM:

\(\left(a+b\right)^2+20=\left[\left(a+b\right)^2+4\right]+16\ge4\left(a+b\right)+16=4\left[\left(a+2\right)+\left(b+2\right)\right]\)

Áp dụng Cauchy Schwarz:

\(P\le\Sigma\frac{4}{4\left[\left(a+2\right)+\left(b+2\right)\right]}=\Sigma\frac{1}{\left(a+2\right)+\left(b+2\right)}\le\frac{1}{4}\Sigma\left(\frac{1}{a+2}+\frac{1}{b+2}\right)=\frac{1}{2}\)

Đẳng thức xảy ra tại a=b=c=1

6 tháng 8 2020

Bác Cool kid chỉ em biến đối đê :D

Bài này có thể biểu diễn dưới dạng tổng bình phương nhưng khá xấu. (Vào TKHĐ xem ảnh)

117335667_2660039447596072_3894082951592785965_n.png?_nc_cat=105&_nc_sid=b96e70&_nc_ohc=x98tbXVuO9QAX-tqVgB&_nc_ht=scontent-xsp1-1.xx&oh=f6d6b3aab4df85fe13bf7c66b47f0bee&oe=5F51AA40

5 tháng 7 2021

 Ta có : \(\Sigma\dfrac{ab}{a^2+b^2}=3-\Sigma\dfrac{a^2+b^2-ab}{a^2+b^2}\) 

Thấy : \(0< ab\left(a^2+b^2-ab\right)\le\dfrac{\left(a^2+b^2\right)^2}{4}\)   

\(\Rightarrow\dfrac{a^2+b^2-ab}{a^2+b^2}\le\dfrac{1}{4}\left(\dfrac{a^2+b^2}{ab}\right)=\dfrac{1}{4}\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

CMTT ; ta có : \(\dfrac{b^2+c^2-bc}{b^2+c^2}\le\dfrac{1}{4}\left(\dfrac{b}{c}+\dfrac{c}{b}\right);\dfrac{c^2+a^2-ac}{a^2+c^2}\le\dfrac{1}{4}\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

Suy ra : \(\Sigma\dfrac{ab}{a^2+b^2}\ge3-\dfrac{1}{4}\left(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a}\right)=\dfrac{1}{4}\left(\dfrac{a+c}{b}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\right)\)

Thấy : \(\dfrac{a+c}{b}+\dfrac{b+c}{a}+\dfrac{a+b}{c}=\dfrac{\left(a+c\right)ac+\left(b+c\right)bc+ab\left(a+b\right)}{abc}=ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)( do abc = 1 ) 

Áp dụng BĐT Schur ta được : \(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\le a^3+b^3+c^3+3abc=\Sigma a^3+3\)   

Suy ra : \(\Sigma\dfrac{ab}{a^2+b^2}\ge3-\dfrac{1}{4}\left(\Sigma a^3+3\right)=\dfrac{9}{4}-\dfrac{1}{4}\Sigma a^3\cdot\)

Khi đó : \(\Sigma a^3+\Sigma\dfrac{ab}{a^2+b^2}\ge\dfrac{3}{4}\Sigma a^3+\dfrac{9}{4}\ge\dfrac{3}{4}.3+\dfrac{9}{4}=\dfrac{9}{2}\)

" = " <=> a = b = c = 1 

Vậy ... 

5 tháng 7 2021

Khuya rồi còn đăng à bạn ? 

28 tháng 2 2022

\(\Leftrightarrow P=\dfrac{\sqrt{c-2}}{c}+\dfrac{\sqrt{a-3}}{a}+\dfrac{\sqrt{b-4}}{b}\)

\(=\dfrac{\sqrt{3\left(a-3\right)}}{a\sqrt{3}}+\dfrac{\sqrt{4\left(b-4\right)}}{2b}+\dfrac{\sqrt{2\left(c-2\right)}}{c\sqrt{2}}\le\dfrac{\dfrac{3+a-3}{2}}{a\sqrt{3}}+\dfrac{\dfrac{4+b-4}{2}}{2b}+\dfrac{\dfrac{2+c-2}{2}}{c\sqrt{2}}=\dfrac{1}{2\sqrt{3}}+\dfrac{1}{4}+\dfrac{1}{2\sqrt{2}}\)

\(dấu"="xảy\) \(ra\Leftrightarrow\left\{{}\begin{matrix}3=a-3\\4=b-4\\2=c-2\\\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

18 tháng 6 2018

\(A=3\left(ab+bc+ca\right)+\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\\ =3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\)

Áp dụng BDT: Cô-si dạng Engel:

\(\Rightarrow A=3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\ge3\left(ab+bc+ca\right)+\dfrac{\left(a-b+b-c+c-a\right)^2}{2+4+8}=3\left(ab+bc+ca\right)\left(1\right)\)

\(\text{Ta lại có: }ab+bc+ac\le a^2+b^2+c^2\\ \Leftrightarrow ab+bc+ac+2\left(ab+bc+ac\right)\le a^2+b^2+c^2+2\left(ab+bc+ac\right)\\ \Leftrightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow A\le9\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}a=b=c\\a+b+c=3\\\dfrac{a-b}{2}+\dfrac{b-c}{4}+\dfrac{c-a}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)

Vậy \(A_{Max}=9\) khi \(a=b=c=1\)

18 tháng 6 2018

vầng, cảm ơn nhiều ạ !

17 tháng 5 2021

1)Từ đề bài:

`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`

`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`

`<=>a=b=c-2`

17 tháng 5 2021

`ab+bc+ca=abc`

`<=>1/a+1/b+1/c=1`

`<=>(1/a+1/b+1/c)^2=1`

`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`

`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`

`a+b+c=0`

Chia 2 vế cho `abc`

`=>1/(ab)+1/(bc)+1/(ca)=0`

`=>2/(ab)+2/(bc)+2/(ca)=0`

`=>1/a^2+1/b^2+1/c^2=1-0=1`

14 tháng 10 2018

Ta có: bc(a2+1) = (a+b)(a+c)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) =\(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\)

Áp dụng BĐT Cô-si: \(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+c}+\dfrac{a}{a+c}\right)\)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

CMTT: \(\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{a+c}\right)\)

\(\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\) S \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+a}+\dfrac{a}{c+a}+\dfrac{b}{a+b}+\dfrac{b}{c+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

\(\Rightarrow\) S\(\le\) \(\dfrac{1}{2}.3=\dfrac{3}{2}\)

Vậy Smax = \(\dfrac{3}{2}\)

Dấu "=" xảy ra\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b=c\\a+b+c=abc\end{matrix}\right.\)

\(\Leftrightarrow\) \(a=b=c=\sqrt{3}\)

13 tháng 6 2021

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

13 tháng 6 2021

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...