Cho A = 1+ 5+ 52+......+ 59/1+ 5+ 52+ .....+ 58; B = 1+ 3+ 32 +.....+ 39/ 1+3+32+....+38
Chứng minh rằng A > B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> -A = 5^59-5^58+5^57-5^56+.....+5-1
Nhóm 4 số thành 1 nhóm thì sẽ có 15 nhóm mà mỗi nhóm đều chia hết cho 52
Ví dụ : 5^59-5^58+5^57+5^56 = 5^56.(5^3-5^2+5-1) = 5^56.104 = 2.52.5^56 chia hết cho 52
=> -A chia hết cho 52
=> A chia hết cho 52
=> đpcm
Tk mk nha
\(B=1+5+5^2+...+5^6+5^7+5^8\)
\(=31+...+5^6\cdot31\)
\(=31\cdot\left(1+...+5^6\right)⋮31\)
2=30x(59+...+52+5+1)+20 là không chính xác. Bạn xem lại đề.
50) \(\sqrt{98-16\sqrt{3}}=4\sqrt{6}-\sqrt{2}\)
51) \(\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{\sqrt{6}-\sqrt{2}}{2}\)
52) \(\sqrt{4+\sqrt{15}}=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)
53) \(\sqrt{5-\sqrt{21}}=\dfrac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{6}}{2}\)
54) \(\sqrt{6-\sqrt{35}}=\dfrac{\sqrt{12-2\sqrt{35}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{10}}{2}\)
55) \(\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{2}\)
56) \(\sqrt{4-\sqrt{15}}=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
\(B=\left(1+5+5^2\right)+...+5^6\left(1+5+5^2\right)=31\left(1+...+5^6\right)⋮31\)
a. 42 . 46 + 42 . 52
= 42 . (46+52)
= 16 . 98
= 1568
b. -75+58+(-25)
= [-75+(-25)]+58
= -100+58
= -42
c. -4 . 5 . (-25)
= [-4 . (-25)] . 5
= 100 . 5
= 500
A=5
B=3
Vì 5>3
Do đó A>B
Vậy .............