K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

a)

Đặt PTĐT (d) là: \(y=kx+m\)

Vì điểm $M(0;1)$ thuộc (d) nên: \(1=k.0+m\Rightarrow m=1\)

Vậy PTĐT (d) là \(y=kx+1\)

b)

PT hoành độ giao điểm:

\(y=-x^2=kx+1\)

\(\Leftrightarrow x^2+kx+1=0(*)\)

Để (d) cắt (P) tại một điểm duy nhất thì $(*)$ chỉ có 1 nghiệm duy nhất.

Điều này xảy ra khi \(\Delta=k^2-4=0\Leftrightarrow k=\pm 2\)

4 tháng 12 2021

\(a,\Leftrightarrow1+m=-2\Leftrightarrow m=-3\\ \Leftrightarrow y=x-3\\ \text{Thay }x=2;y=5\Leftrightarrow5=2-3=-1\left(\text{vô lí}\right)\\ \Leftrightarrow E\notinđths\\ b,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Rightarrow x=-m\Rightarrow E\left(-m;0\right)\Rightarrow OE=\left|m\right|\\x=0\Rightarrow y=m\Rightarrow F\left(0;m\right)\Rightarrow OF=\left|m\right|\end{matrix}\right.\)

Gọi H là chân đường cao từ O đến EF

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OE^2}+\dfrac{1}{OF^2}=\dfrac{1}{2m^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)

\(\Leftrightarrow m^2=\dfrac{9}{2}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{\sqrt{2}}\\m=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)

19 tháng 2 2021

a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)

\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)

- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .

<=> \(\Delta>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

\(\Leftrightarrow m\ne4\)

Vậy ...

b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv

 

a) Phương trình hoành độ giao điểm là: 

\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)

\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m^2-8m+16>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

mà \(\left(m-4\right)^2\ge0\forall m\)

nên \(m-4\ne0\)

hay \(m\ne4\)

Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt

1 tháng 4 2021

Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )

Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1

=> y=kx-1(d)

Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:

-x^2=kx-1

<=> x^2-kx-1=0 (1)

Xét phương trình có a=1;c=-1 => ac=-1 <0 

=> (1) luôn có 2 nghiệm phân biệt

=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt

a: loading...

b: Phương trình OA có dạng là y=ax+b

Theo đề, ta có hệ:

0a+b=0 và a+b=1

=>b=0 và a=1

=>y=x

Vì (d)//OA nên (d): y=x+b

Thay x=2 và y=0 vào (d), ta được:

b+2=0

=>b=-2

=>y=x-2

PTHĐGĐ là:

-x^2-x+2=0

vì a*c<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

21 tháng 1 2018

31 tháng 8 2019

Đáp án đúng : B

2 tháng 10 2017

Phương trình đường thẳng d: y = kx − 3

Phương trình hoành độ giao điểm của (P) và  d : - x 2 + 4 x - 3 = k x - 3

⇔ - x 2 + 4 - k x = 0 ⇔ x - x + 4 - k = 0 1

d cắt đồ thị (P) tại 2 điểm phân biệt khi (1) có 2 nghiệm phân biệt ⇔ 4 - k ≠ 0 ⇔ k ≠ 4

Ta có E x 1 ; k x 1 − 3 ,   F x 2 ; k x 2 − 3 với x 1 ,   x 2 là nghiệm phương trình (1)

Δ O E F  vuông tại O ⇒ O E → .   O F → = 0 ⇔ x 1 . x 2 + k x 1 − 3 k x 2 − 3 = 0

⇔ x 1 . x 2 1 + k 2 − 3 k x 1 + x 2 + 9 = 0 ⇔ 0. 1 + k 2 − 3 k ( 4 − k ) + 9 = 0

⇔ k 2 − 4 k + 3 = 0 ⇔ k = 1 k = 3

Đáp án cần chọn là: D

23 tháng 12 2018

Chọn D