Tìm gtnn của A
A=\(\left|\right|x+3\left|+y^2-2y+10\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
\(\ge\left(\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}\cdot\frac{y^{10}}{x^2}}-x^4y^4\right)+\left[\frac{2x^8y^8}{4}-2x^2y^2\right]-1\)
\(\ge\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-2x^2y^2-\frac{3}{2}-1\ge4\sqrt[4]{\frac{x^8y^8}{2.2.2.2}}-\frac{3}{2}-1=2x^2y^2-2x^2y^2-\frac{5}{2}=-\frac{5}{2}\)
Vậy min Q = -5/2 tại x = y = +-1
Còn cách đặt ẩn phụ thế này:
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}+\frac{1}{4}.2\sqrt{x^{16}.y^{16}}-\left(x^4y^4+2x^2y^2+1\right)\)\(=\frac{x^8y^8}{2}-4x^2y^2-2\)
Đặt x2y2 = t >= 0. Khi đó:
\(2Q=t^4-4t-2=\left(t^4-2t^2+1\right)+2\left(t^2-2t+1\right)+5=\left(t^2-1\right)^2+2\left(t-1\right)^2+5\ge5\Rightarrow Q\ge\frac{5}{2}\)Xảy ra đẳng thức khi và chỉ khi x = y =+-1
bạn vào câu hỏi tương tự xem bài của Ngô Thị Thu Trang nhé, Mr.Lazy giải rồi đó
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
Ta nhận thấy : \(\left(x-2y\right)^2\ge0\)
\(\left(x-3\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow A=\left(x-2y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+3\ge3\)
Min A = 3 \(\Leftrightarrow\begin{cases}x-2y=0\\x-3=0\\y-1=0\end{cases}\Leftrightarrow\begin{cases}x-2y=0\\x=3\\y=1\end{cases}\Leftrightarrow}\begin{cases}x=3\\y=1\\\end{cases}}\)
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
Ta có :
\(\left(x+y-3\right)^4\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\left(x-2y\right)^2\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\Rightarrow\)\(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=3\\x+y-3y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=3\\x+y=3y\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-y\\3=3y\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\y=1\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-1\\y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy \(A_{min}=2018\) khi \(x=2\) và \(y=1\)
Chúc bạn học tốt ~
Ta có \(\left(x+y-3\right)^4\ge0\) với mọi giá trị của x
\(\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)với mọi gt của x
=> GTNN của A là 2018.
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)
\(x^{16}+y^{16}+1+1+1+1+1+1\ge8\sqrt[8]{x^{16}y^{16}}=8x^2y^2\)
\(\Rightarrow A\ge x^4y^4+\frac{1}{4}\left(8x^2y^2-6\right)-\left(x^4y^4+2x^2y^2+1\right)=-\frac{5}{2}\)
Dấu "=" xảy ra khi \(x^2=y^2=1\)
Vậy GTNN của A là -5/2.
Viết ại ik
\(A=\left|x+3\right|+\left|y^2-2y+10\right|\)
\(=\left|x+3\right|+\left|\left(y-1\right)^2+9\right|\ge0+\left|0+9\right|=9\)
Dấu "=" xảy ra <=> x = - 3 ; y = 1