\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\)
Tìm m để hệ (1) có nghiệm (x;y) thoả mãn \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\-15x+3y=-3\end{matrix}\right.\)
\(\Rightarrow17x=m+3\)
\(\Leftrightarrow x=\dfrac{m+3}{17}\)
để x>0 \(\Leftrightarrow\dfrac{m+3}{17}>0\Leftrightarrow m+3>0\Leftrightarrow m>-3\)
còn y> gì bạn cũng làm như zậy nhé :))
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Vì \(\dfrac{1}{2}\ne\dfrac{-2}{3}\)
nên hệ luôn có nghiệm duy nhất
a: \(\left\{{}\begin{matrix}x-2y=-3m-4\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-6m-8\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y-2x-3y=-6m-8-8m+1\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-7y=-14m-7\\2x=8m-1-3y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2m+1\\2x=8m-1-6m-3=2m-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2m+1\\x=m-2\end{matrix}\right.\)
Đặt \(A=y^2+3x-1\)
\(=\left(2m+1\right)^2+3\left(m-2\right)-1\)
\(=4m^2+4m+1+3m-6-1\)
\(=4m^2+7m-6\)
\(=4\left(m^2+\dfrac{7}{4}m-\dfrac{3}{2}\right)\)
\(=4\left(m^2+2\cdot m\cdot\dfrac{7}{8}+\dfrac{49}{64}-\dfrac{145}{64}\right)\)
\(=4\left(m+\dfrac{7}{8}\right)^2-\dfrac{145}{16}>=-\dfrac{145}{16}\)
Dấu '=' xảy ra khi m=-7/8
b: Đặt B=x^2-y^2
\(=\left(m-2\right)^2-\left(2m+1\right)^2\)
\(=m^2-4m+4-4m^2-4m-1\)
\(=-3m^2-8m+3\)
\(=-3\left(m^2+\dfrac{8}{3}m-1\right)\)
\(=-3\left(m^2+2\cdot m\cdot\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{25}{9}\right)\)
\(=-3\left(m+\dfrac{4}{3}\right)^2+\dfrac{25}{3}< =\dfrac{25}{3}\)
Dấu '=' xảy ra khi m=-4/3
\(HPT\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x+2mx-3m=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x\left(2m+1\right)=3m+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m+1}{2m+1}\\y=\dfrac{6m+2-6m-3}{2m+1}=\dfrac{-1}{2m+1}\end{matrix}\right.\)
Ta có \(mx+3y=1\Leftrightarrow\dfrac{3m^2+m}{2m+1}-\dfrac{3}{2m+1}=1\Leftrightarrow3m^2+m-3=2m+1\)
\(\Leftrightarrow3m^2-m-4=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{4}{3}\\m=-1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}2x+3y=m\\5x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\5x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{17}\\y=5x-1=\dfrac{5m+15}{17}-\dfrac{17}{17}=\dfrac{5m-2}{17}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất sao cho x<0 và y>0 thì
\(\left\{{}\begin{matrix}\dfrac{m+3}{17}< 0\\\dfrac{5m-2}{17}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+3< 0\\5m-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\m>\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)